Vinicius Uchoa Oliveira;Ricardo A. M. Pereira;Amit Kumar Baghel;Nuno B. Carvalho
{"title":"Aerodynamic Antenna Array for 5.8 GHz UAV Wireless Power Applications","authors":"Vinicius Uchoa Oliveira;Ricardo A. M. Pereira;Amit Kumar Baghel;Nuno B. Carvalho","doi":"10.1109/JRFID.2025.3599976","DOIUrl":null,"url":null,"abstract":"Wireless power transfer (WPT) has the potential to supply energy to various applications, such as electric vehicles and uncrewed aerial vehicles (UAVs), enabling extended operation without direct physical connections. This article presents the design, simulation, and experimental validation of a patch antenna array optimized for RF power reception in UAVs, based on a traditional antenna array. To improve aerodynamic performance, structural modifications, such as holes and slits, were introduced to facilitate airflow while maintaining the electromagnetic integrity of the antenna. This new antenna was manufactured and evaluated in an anechoic chamber, achieving a measured gain of 16.6 dBi, closely matching the simulated 17.74 dBi for a <inline-formula> <tex-math>$4{\\times }4$ </tex-math></inline-formula> patch array. Additionally, computer fluid dynamics simulations were performed and the stream trace and drag coefficients were compared for both antennas, confirming that the design reduces drag and enhances stability, making it a viable solution for UAV applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"705-712"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11129109/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless power transfer (WPT) has the potential to supply energy to various applications, such as electric vehicles and uncrewed aerial vehicles (UAVs), enabling extended operation without direct physical connections. This article presents the design, simulation, and experimental validation of a patch antenna array optimized for RF power reception in UAVs, based on a traditional antenna array. To improve aerodynamic performance, structural modifications, such as holes and slits, were introduced to facilitate airflow while maintaining the electromagnetic integrity of the antenna. This new antenna was manufactured and evaluated in an anechoic chamber, achieving a measured gain of 16.6 dBi, closely matching the simulated 17.74 dBi for a $4{\times }4$ patch array. Additionally, computer fluid dynamics simulations were performed and the stream trace and drag coefficients were compared for both antennas, confirming that the design reduces drag and enhances stability, making it a viable solution for UAV applications.