Fast Computation of Volume Integral Operator-Based Characteristic Modes With Skeletonization

IF 4.8 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Di Wu;Qi Wu
{"title":"Fast Computation of Volume Integral Operator-Based Characteristic Modes With Skeletonization","authors":"Di Wu;Qi Wu","doi":"10.1109/LAWP.2025.3586907","DOIUrl":null,"url":null,"abstract":"Calculating characteristic modes of dielectric objects with the volume integral operator (VIO) is computationally inefficient. The volumetric mesh generates a large impedance matrix and results in a time-consuming eigenvalue equation-solving process. Skeletonization is employed to improve the efficiency of the VIO-based method by leveraging the rank-deficient property. Both the memory and time required for assembling impedance matrices are significantly reduced. The repeated matrix-vector multiplications involved in solving the eigenvalue equation are expedited. Numerical examples are presented to validate the accuracy and efficiency of the proposed method. Parameter optimization is performed to achieve a more practical and efficient algorithm setting.","PeriodicalId":51059,"journal":{"name":"IEEE Antennas and Wireless Propagation Letters","volume":"24 9","pages":"3218-3222"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Wireless Propagation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11072726/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Calculating characteristic modes of dielectric objects with the volume integral operator (VIO) is computationally inefficient. The volumetric mesh generates a large impedance matrix and results in a time-consuming eigenvalue equation-solving process. Skeletonization is employed to improve the efficiency of the VIO-based method by leveraging the rank-deficient property. Both the memory and time required for assembling impedance matrices are significantly reduced. The repeated matrix-vector multiplications involved in solving the eigenvalue equation are expedited. Numerical examples are presented to validate the accuracy and efficiency of the proposed method. Parameter optimization is performed to achieve a more practical and efficient algorithm setting.
基于骨架化的体积积分算子特征模的快速计算
用体积积分算子(VIO)计算介质物体的特征模态是计算效率低下的。体积网格产生较大的阻抗矩阵,求解特征值方程耗时长。利用缺秩特性,采用骨架化方法提高了基于vio的方法的效率。组装阻抗矩阵所需的内存和时间都大大减少。加快了求解特征值方程所涉及的重复矩阵-向量乘法。数值算例验证了该方法的准确性和有效性。为了实现更实用、更高效的算法设置,对参数进行了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
9.50%
发文量
529
审稿时长
1.0 months
期刊介绍: IEEE Antennas and Wireless Propagation Letters (AWP Letters) is devoted to the rapid electronic publication of short manuscripts in the technical areas of Antennas and Wireless Propagation. These are areas of competence for the IEEE Antennas and Propagation Society (AP-S). AWPL aims to be one of the "fastest" journals among IEEE publications. This means that for papers that are eventually accepted, it is intended that an author may expect his or her paper to appear in IEEE Xplore, on average, around two months after submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信