Securing Heterogeneous Network (HetNet) Communications for Wildfire Management: Mitigating the Effects of Adversarial and Environmental Threats

IF 3.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Nesrine Benchoubane;Olfa Ben Yahia;William Ferguson;Gürkan Gür;Sumit Chakravarty;Gregory Falco;Gunes Karabulut Kurt
{"title":"Securing Heterogeneous Network (HetNet) Communications for Wildfire Management: Mitigating the Effects of Adversarial and Environmental Threats","authors":"Nesrine Benchoubane;Olfa Ben Yahia;William Ferguson;Gürkan Gür;Sumit Chakravarty;Gregory Falco;Gunes Karabulut Kurt","doi":"10.1109/JRFID.2025.3601843","DOIUrl":null,"url":null,"abstract":"In the face of adverse environmental conditions and cyber threats, robust communication systems for critical applications such as wildfire management and detection demand secure and resilient architectures. This paper presents a novel framework that considers both adversarial factors, building resilience into a heterogeneous network (HetNet)integrating Low Earth Orbit (LEO) satellite constellation with High-Altitude Platform Ground Stations (HAPGS) and Low-Altitude Platforms (LAPS), tailored to support wildfire management operations. Building upon our previous work on secure-by-component approach for link segment security, we extend protection to the communication layer by securing both Radio Frequency (RF)/Free Space Optics (FSO) management and different links. Through a case study, we quantify how environmental stressors impact secrecy capacity and expose the system to passive adversaries. Key findings demonstrate that atmospheric attenuation and beam misalignment can notably degrade secrecy capacity across both short- and long-range communication links, while high-altitude eavesdroppers face less signal degradation, increasing their interception capability. Moreover, increasing transmit power to counter environmental losses can inadvertently improve eavesdropper reception, thereby reducing overall link confidentiality. Our worknot only highlights the importance of protecting networks from these dual threats but also aligns with the IEEE P3536 Standard for Space System Cybersecurity Design, ensuring resilience and the prevention of mission failures.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"713-726"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11134385/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the face of adverse environmental conditions and cyber threats, robust communication systems for critical applications such as wildfire management and detection demand secure and resilient architectures. This paper presents a novel framework that considers both adversarial factors, building resilience into a heterogeneous network (HetNet)integrating Low Earth Orbit (LEO) satellite constellation with High-Altitude Platform Ground Stations (HAPGS) and Low-Altitude Platforms (LAPS), tailored to support wildfire management operations. Building upon our previous work on secure-by-component approach for link segment security, we extend protection to the communication layer by securing both Radio Frequency (RF)/Free Space Optics (FSO) management and different links. Through a case study, we quantify how environmental stressors impact secrecy capacity and expose the system to passive adversaries. Key findings demonstrate that atmospheric attenuation and beam misalignment can notably degrade secrecy capacity across both short- and long-range communication links, while high-altitude eavesdroppers face less signal degradation, increasing their interception capability. Moreover, increasing transmit power to counter environmental losses can inadvertently improve eavesdropper reception, thereby reducing overall link confidentiality. Our worknot only highlights the importance of protecting networks from these dual threats but also aligns with the IEEE P3536 Standard for Space System Cybersecurity Design, ensuring resilience and the prevention of mission failures.
保护异构网络(HetNet)通信用于野火管理:减轻对抗性和环境威胁的影响
面对不利的环境条件和网络威胁,用于野火管理和探测等关键应用的强大通信系统需要安全和有弹性的架构。本文提出了一个新的框架,考虑了这两个对抗因素,将弹性构建到一个异构网络(HetNet)中,该网络将低地球轨道(LEO)卫星星座与高海拔平台地面站(HAPGS)和低空平台(LAPS)相结合,为支持野火管理操作量身定制。基于我们之前对链路段安全的组件安全方法的研究,我们通过保护射频(RF)/自由空间光学(FSO)管理和不同的链路,将保护扩展到通信层。通过案例研究,我们量化了环境压力因素如何影响保密能力并使系统暴露于被动对手。主要研究结果表明,大气衰减和波束失调会显著降低短距离和远程通信链路的保密能力,而高空窃听者面临的信号衰减较少,从而提高了他们的拦截能力。此外,增加发射功率以对抗环境损失可能会无意中提高窃听者的接收能力,从而降低整个链路的保密性。我们的工作不仅强调了保护网络免受这双重威胁的重要性,而且还符合IEEE P3536空间系统网络安全设计标准,确保弹性和预防任务失败。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信