Adrienne L. Lehnert;Marissa E. Kranz;Donald Q. DeWitt;David C. Argento;Robert D. Stewart;Robert S. Miyaoka
{"title":"An Imaging System to Support Fast Neutron Therapy Quality Assurance (QA) of Intensity Modulated Neutron Therapy (IMNT)","authors":"Adrienne L. Lehnert;Marissa E. Kranz;Donald Q. DeWitt;David C. Argento;Robert D. Stewart;Robert S. Miyaoka","doi":"10.1109/TRPMS.2025.3551208","DOIUrl":null,"url":null,"abstract":"The University of Washington Medical Center has clinically implemented intensity modulated neutron therapy (IMNT) as a novel, high linear energy transfer modality for palliative and curative treatments of certain cancers. Because of the destructive nature of fast neutrons to electronics, this required development of a novel patient specific quality assurance (QA) system. Therefore, we developed an in-house 2-D positron emission tomography (PET) system that images patient-specific QA fields by measuring induced 11C positron activity in polyethylene plates. The scanner is built around two parallel imaging panels of <inline-formula> <tex-math>$2\\times 16$ </tex-math></inline-formula> repurposed clinical PET detector modules. Images are reconstructed using focal plane tomography in a <inline-formula> <tex-math>$14\\times 16$ </tex-math></inline-formula> cm2 field of view. Standard metrics (gamma analysis) are used to compare images with simulated (MCNP6) fluence maps. Studies demonstrated a linear dose-response relationship and full system [x, y] spatial resolution of [<inline-formula> <tex-math>$5.2~\\pm ~0.30$ </tex-math></inline-formula>, <inline-formula> <tex-math>$5.3~\\pm ~0.34$ </tex-math></inline-formula>] mm2 with 1 mm-diameter point source. Final image spatial resolution is approximately 8.5 mm FWHM due to the geometry of the polyethylene plates. Energy resolution (FWHM) in the center crystals is <inline-formula> <tex-math>$28~\\pm ~3$ </tex-math></inline-formula>%. Assembly, characterization, and quantitative calibration of the neutron Positron Emission Portal Imaging (nPEPI) system was completed in 2022, and more than 100 patients have since completed QA.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 7","pages":"970-977"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10925577/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
The University of Washington Medical Center has clinically implemented intensity modulated neutron therapy (IMNT) as a novel, high linear energy transfer modality for palliative and curative treatments of certain cancers. Because of the destructive nature of fast neutrons to electronics, this required development of a novel patient specific quality assurance (QA) system. Therefore, we developed an in-house 2-D positron emission tomography (PET) system that images patient-specific QA fields by measuring induced 11C positron activity in polyethylene plates. The scanner is built around two parallel imaging panels of $2\times 16$ repurposed clinical PET detector modules. Images are reconstructed using focal plane tomography in a $14\times 16$ cm2 field of view. Standard metrics (gamma analysis) are used to compare images with simulated (MCNP6) fluence maps. Studies demonstrated a linear dose-response relationship and full system [x, y] spatial resolution of [$5.2~\pm ~0.30$ , $5.3~\pm ~0.34$ ] mm2 with 1 mm-diameter point source. Final image spatial resolution is approximately 8.5 mm FWHM due to the geometry of the polyethylene plates. Energy resolution (FWHM) in the center crystals is $28~\pm ~3$ %. Assembly, characterization, and quantitative calibration of the neutron Positron Emission Portal Imaging (nPEPI) system was completed in 2022, and more than 100 patients have since completed QA.