{"title":"Influence of Indium and Arsenic composition on structural properties of InGaAsSb/AlGaAsSb multi-quantum wells grown by molecular beam epitaxy","authors":"Ayşe Aygül Ergürhan , Burcu Arpapay , Sabahattin Erinç Erenoğlu , Mustafa Kulakcı , Behçet Özgür Alaydin , Didem Altun , Uğur Serincan","doi":"10.1016/j.jcrysgro.2025.128330","DOIUrl":null,"url":null,"abstract":"<div><div>InGaAsSb/AlGaAsSb multiple quantum well (MQW) structures, with their narrow band gap quaternary compositions, are well suited for devices operating in the 2–3 µm mid-infrared spectral region. In this study, to investigate the effects of compositional variation on structural properties, twenty-period MQW structures were grown by molecular beam epitaxy on (100) GaSb substrates. It was demonstrated that varying the In and As concentrations while keeping the V/III beam equivalent pressure ratio constant significantly influenced the surface morphology due to defect formation. It was found that in the samples with In concentrations ranging from 30 to 44%, low As content resulted in an increase in the number of surface defects. However, a smooth, defect-free surface and improved crystal quality were achieved at 44% In content when the As concentration in the QWs was 14% or higher. These results highlight the importance of precise compositional tuning for achieving high structural quality in mid-infrared MQW devices.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"670 ","pages":"Article 128330"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024825002842","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
InGaAsSb/AlGaAsSb multiple quantum well (MQW) structures, with their narrow band gap quaternary compositions, are well suited for devices operating in the 2–3 µm mid-infrared spectral region. In this study, to investigate the effects of compositional variation on structural properties, twenty-period MQW structures were grown by molecular beam epitaxy on (100) GaSb substrates. It was demonstrated that varying the In and As concentrations while keeping the V/III beam equivalent pressure ratio constant significantly influenced the surface morphology due to defect formation. It was found that in the samples with In concentrations ranging from 30 to 44%, low As content resulted in an increase in the number of surface defects. However, a smooth, defect-free surface and improved crystal quality were achieved at 44% In content when the As concentration in the QWs was 14% or higher. These results highlight the importance of precise compositional tuning for achieving high structural quality in mid-infrared MQW devices.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.