{"title":"Heat equation in a periodic domain with special initial data","authors":"Marcus Rosenberg, Jari Taskinen","doi":"10.1016/j.jde.2025.113754","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial-boundary value problem with the Neumann boundary condition for the classical linear heat equation in unbounded domains <span><math><mi>Ω</mi><mo>⊊</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which are periodic in all directions of the Cartesian coordinate system. Generalizing the results of a previous paper by the authors, we apply Floquet transform methods to obtain results on the large time decay rates of the solution in the sup-norm. We observe that for a general, integrable initial data, the solution decays at the same rate <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mi>d</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> as in the case of the Cauchy problem in the entire Euclidean space. We also consider special initial data with vanishing <em>x</em>-integral and obtain a faster decay rate. In the main results of the paper we pose for the initial data certain more detailed conditions, which are related to the lowest eigenvalue and eigenfunction of the model problem coming from the Floquet transform. Faster decay rates are obtained for such initial data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113754"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007818","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the initial-boundary value problem with the Neumann boundary condition for the classical linear heat equation in unbounded domains which are periodic in all directions of the Cartesian coordinate system. Generalizing the results of a previous paper by the authors, we apply Floquet transform methods to obtain results on the large time decay rates of the solution in the sup-norm. We observe that for a general, integrable initial data, the solution decays at the same rate as in the case of the Cauchy problem in the entire Euclidean space. We also consider special initial data with vanishing x-integral and obtain a faster decay rate. In the main results of the paper we pose for the initial data certain more detailed conditions, which are related to the lowest eigenvalue and eigenfunction of the model problem coming from the Floquet transform. Faster decay rates are obtained for such initial data.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics