Foliations raised by quadratic-like polynomial submersions on the real plane and a sharp result on the real Jacobian conjecture

IF 2.3 2区 数学 Q1 MATHEMATICS
Francisco Braun , Filipe Fernandes , Ingrid S. Meza-Sarmiento
{"title":"Foliations raised by quadratic-like polynomial submersions on the real plane and a sharp result on the real Jacobian conjecture","authors":"Francisco Braun ,&nbsp;Filipe Fernandes ,&nbsp;Ingrid S. Meza-Sarmiento","doi":"10.1016/j.jde.2025.113742","DOIUrl":null,"url":null,"abstract":"<div><div>We study the planar foliations whose leaves are the connected components of the fibers of polynomial submersion functions having degree 2 in one of the variables. As an application of this geometric study, we prove the following result on the so called real Jacobian conjecture in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>: it is true if one of the coordinate functions has degree 2 in one of the variables. This is sharp because of an existing counterexample with one of the coordinate functions having degree 3 in one of the variables.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"449 ","pages":"Article 113742"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007697","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the planar foliations whose leaves are the connected components of the fibers of polynomial submersion functions having degree 2 in one of the variables. As an application of this geometric study, we prove the following result on the so called real Jacobian conjecture in R2: it is true if one of the coordinate functions has degree 2 in one of the variables. This is sharp because of an existing counterexample with one of the coordinate functions having degree 3 in one of the variables.
二次多项式在实平面上的叶形及实雅可比猜想的一个尖锐结果
我们研究了平面叶,其叶是其中一个变量的二阶多项式浸没函数的纤维的连通分量。作为这个几何研究的一个应用,我们证明了R2中所谓的实雅可比猜想的以下结果:如果其中一个坐标函数在其中一个变量中具有2次,则该猜想成立。这是尖锐的,因为存在一个反例,其中一个坐标函数在其中一个变量中具有3度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信