Radiative flow of hybrid nanofluid (TiO2+Ag/Blood and Au + Al2O3/Blood) over a sheet with Cattaneo–Christov heat transport

IF 2.5 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Azhagu Ramar , S.K. Sudarmozhi , P.D. Selvi , Faiza Benabdallah , Nadia Batool
{"title":"Radiative flow of hybrid nanofluid (TiO2+Ag/Blood and Au + Al2O3/Blood) over a sheet with Cattaneo–Christov heat transport","authors":"Azhagu Ramar ,&nbsp;S.K. Sudarmozhi ,&nbsp;P.D. Selvi ,&nbsp;Faiza Benabdallah ,&nbsp;Nadia Batool","doi":"10.1016/j.jrras.2025.101930","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the radiative flow and heat transport characteristics of two biologically compatible hybrid nanofluids-TiO<sub>2</sub>+Ag/blood and Au + Al<sub>2</sub>O<sub>3</sub>/blood-over an exponentially stretching sheet, incorporating the Cattaneo-Christov heat flux model. The effects of velocity slip, thermal slip, nanoparticle volume fraction, thermal relaxation time, Prandtl number, heat generation, and nondimensional suction are examined. The governing non-conservative partial differential equations are reduced to a system of nonlinear ordinary differential equations via similarity transformations and numerically solved using the BVP4C MATLAB solver. The results reveal that increasing thermogenesis, slip velocity, and nanoparticle volume fraction enhances heat transfer, while increased thermal slip and Prandtl number reduce the temperature near the surface. Additionally, higher nanoparticle concentrations, suction, and velocity slip parameters decrease the velocity profile. This comprehensive analysis provides critical insights into modulating thermal and velocity fields in biologically relevant hybrid nanofluid systems, offering valuable guidance for the design of advanced biomedical devices and thermal management technologies.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 4","pages":"Article 101930"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725006429","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the radiative flow and heat transport characteristics of two biologically compatible hybrid nanofluids-TiO2+Ag/blood and Au + Al2O3/blood-over an exponentially stretching sheet, incorporating the Cattaneo-Christov heat flux model. The effects of velocity slip, thermal slip, nanoparticle volume fraction, thermal relaxation time, Prandtl number, heat generation, and nondimensional suction are examined. The governing non-conservative partial differential equations are reduced to a system of nonlinear ordinary differential equations via similarity transformations and numerically solved using the BVP4C MATLAB solver. The results reveal that increasing thermogenesis, slip velocity, and nanoparticle volume fraction enhances heat transfer, while increased thermal slip and Prandtl number reduce the temperature near the surface. Additionally, higher nanoparticle concentrations, suction, and velocity slip parameters decrease the velocity profile. This comprehensive analysis provides critical insights into modulating thermal and velocity fields in biologically relevant hybrid nanofluid systems, offering valuable guidance for the design of advanced biomedical devices and thermal management technologies.
混合纳米流体(TiO2+Ag/Blood和Au + Al2O3/Blood)在具有Cattaneo-Christov热传输的薄片上的辐射流动
本文采用Cattaneo-Christov热通量模型,研究了两种生物相容性混合纳米流体(tio2 +Ag/血和Au + Al2O3/血)在指数拉伸薄片上的辐射流和热输运特性。考察了速度滑移、热滑移、纳米颗粒体积分数、热松弛时间、普朗特数、热生成和无因次吸力的影响。通过相似变换将控制非保守偏微分方程转化为非线性常微分方程组,并利用BVP4C MATLAB求解器对其进行数值求解。结果表明,生热速率、滑移速度和纳米颗粒体积分数的增加有利于传热,而滑移数和普朗特数的增加降低了表面温度。此外,更高的纳米颗粒浓度、吸力和速度滑移参数会降低速度分布。这一全面的分析为生物相关的混合纳米流体系统中调节热和速度场提供了重要的见解,为先进生物医学设备和热管理技术的设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信