Quantum capacitance of dressed monolayer jacutingaite Pt2HgSe3

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Tran Cong Phong , Ta T. Tho , Nguyen T. Nam , Le T.T. Phuong
{"title":"Quantum capacitance of dressed monolayer jacutingaite Pt2HgSe3","authors":"Tran Cong Phong ,&nbsp;Ta T. Tho ,&nbsp;Nguyen T. Nam ,&nbsp;Le T.T. Phuong","doi":"10.1016/j.physb.2025.417731","DOIUrl":null,"url":null,"abstract":"<div><div>To optimize next-generation electronic and quantum devices based on low-dimensional systems, accurately evaluating the total capacitance – particularly the quantum capacitance (QC) – is essential. In this study, we employ the Kane–Mele model alongside the Boltzmann transport approach to show how QC can be effectively tuned through topological phase transitions in monolayer jacutingaite (Pt<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>HgSe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>) under the influence of static and dynamic electric fields. Remarkably, we find that QC is significantly enhanced when the system undergoes a transition from a quantum spin Hall insulator phase to a semimetallic phase. In contrast, QC is suppressed when the transition leads to a band insulator or quantum Hall insulator phase. We further explore how QC responds to variations in temperature and static electric field strength as a function of the applied dynamic electric field.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"716 ","pages":"Article 417731"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625008488","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

To optimize next-generation electronic and quantum devices based on low-dimensional systems, accurately evaluating the total capacitance – particularly the quantum capacitance (QC) – is essential. In this study, we employ the Kane–Mele model alongside the Boltzmann transport approach to show how QC can be effectively tuned through topological phase transitions in monolayer jacutingaite (Pt2HgSe3) under the influence of static and dynamic electric fields. Remarkably, we find that QC is significantly enhanced when the system undergoes a transition from a quantum spin Hall insulator phase to a semimetallic phase. In contrast, QC is suppressed when the transition leads to a band insulator or quantum Hall insulator phase. We further explore how QC responds to variations in temperature and static electric field strength as a function of the applied dynamic electric field.
修饰单层尖晶石Pt2HgSe3的量子电容
为了优化基于低维系统的下一代电子和量子器件,准确评估总电容,特别是量子电容(QC)是必不可少的。在这项研究中,我们采用Kane-Mele模型和玻尔兹曼输运方法来展示QC如何在静态和动态电场的影响下通过单层jacutingaite (Pt2HgSe3)的拓扑相变有效地调谐。值得注意的是,我们发现当系统经历从量子自旋霍尔绝缘体相到半金属相的转变时,QC显着增强。相反,当跃迁导致带绝缘体或量子霍尔绝缘体相位时,QC被抑制。我们进一步探讨QC如何响应温度和静电场强的变化作为应用的动态电场的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信