{"title":"Dual interaction network with cross-image attention for medical image segmentation","authors":"Jeonghyun Noh , Wangsu Jeon , Jinsun Park","doi":"10.1016/j.patrec.2025.08.018","DOIUrl":null,"url":null,"abstract":"<div><div>Medical image segmentation is a crucial method for assisting professionals in diagnosing various diseases through medical imaging. However, various factors such as noise, blurriness, and low contrast often hinder the accurate diagnosis of diseases. While numerous image enhancement techniques can mitigate these issues, they may also alter crucial information needed for accurate diagnosis in the original image. Conventional image fusion strategies such as feature concatenation can address this challenge. However, they struggle to fully leverage the advantages of both original and enhanced images while suppressing the side effects of the enhancements. To overcome the problem, we propose a dual interactive fusion module (DIFM) that effectively exploits mutual complementary information from the original and enhanced images. DIFM employs cross-attention bidirectionally to simultaneously attend to corresponding spatial information across different images, subsequently refining the complementary features via global spatial attention. This interaction leverages low- to high-level features implicitly associated with diverse structural attributes like edges, blobs, and object shapes, resulting in enhanced features that embody important spatial characteristics. In addition, we introduce a multi-scale boundary loss based on gradient extraction to improve segmentation accuracy at object boundaries. Experimental results on the ACDC and Synapse datasets demonstrate the superiority of the proposed method quantitatively and qualitatively.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"197 ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002946","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Medical image segmentation is a crucial method for assisting professionals in diagnosing various diseases through medical imaging. However, various factors such as noise, blurriness, and low contrast often hinder the accurate diagnosis of diseases. While numerous image enhancement techniques can mitigate these issues, they may also alter crucial information needed for accurate diagnosis in the original image. Conventional image fusion strategies such as feature concatenation can address this challenge. However, they struggle to fully leverage the advantages of both original and enhanced images while suppressing the side effects of the enhancements. To overcome the problem, we propose a dual interactive fusion module (DIFM) that effectively exploits mutual complementary information from the original and enhanced images. DIFM employs cross-attention bidirectionally to simultaneously attend to corresponding spatial information across different images, subsequently refining the complementary features via global spatial attention. This interaction leverages low- to high-level features implicitly associated with diverse structural attributes like edges, blobs, and object shapes, resulting in enhanced features that embody important spatial characteristics. In addition, we introduce a multi-scale boundary loss based on gradient extraction to improve segmentation accuracy at object boundaries. Experimental results on the ACDC and Synapse datasets demonstrate the superiority of the proposed method quantitatively and qualitatively.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.