Trapezoid and trapezoidal prism for the maximum relative drawdown: Probability, crash options pricing, and risk

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jia-Hao Syu, Yuh-Dauh Lyuu
{"title":"Trapezoid and trapezoidal prism for the maximum relative drawdown: Probability, crash options pricing, and risk","authors":"Jia-Hao Syu,&nbsp;Yuh-Dauh Lyuu","doi":"10.1016/j.amc.2025.129708","DOIUrl":null,"url":null,"abstract":"<div><div>Maximum drawdown (MDD) and maximum relative drawdown (MrDD) are well-known in portfolio management and performance evaluations. They can also form the basis of a stop-loss strategy. But there is no closed-form formula for the probability that the MrDD (MDD) ever reaches some positive threshold over a period of time. This paper focuses on MrDD and employs a random walk to approximate the underlying geometric Brownian motion (GBM) for the price, taking care to match the threshold for faster convergence. Let <span><math><mi>n</mi></math></span> be the number of time steps. This paper proposes an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mi>n</mi><mrow><mn>1.5</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-sized trapezoid to calculate the above-mentioned probability. The trapezoid can price the crash option with a digital payoff accurately. This paper further proposes an <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mi>n</mi><mrow><mn>2.5</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-sized trapezoidal prism to price the crash option with a resetting payoff accurately and calculate the expected return rate and common risk measures of an MrDD-based stop-loss strategy.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129708"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004345","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum drawdown (MDD) and maximum relative drawdown (MrDD) are well-known in portfolio management and performance evaluations. They can also form the basis of a stop-loss strategy. But there is no closed-form formula for the probability that the MrDD (MDD) ever reaches some positive threshold over a period of time. This paper focuses on MrDD and employs a random walk to approximate the underlying geometric Brownian motion (GBM) for the price, taking care to match the threshold for faster convergence. Let n be the number of time steps. This paper proposes an O(n1.5)-sized trapezoid to calculate the above-mentioned probability. The trapezoid can price the crash option with a digital payoff accurately. This paper further proposes an O(n2.5)-sized trapezoidal prism to price the crash option with a resetting payoff accurately and calculate the expected return rate and common risk measures of an MrDD-based stop-loss strategy.
梯形和梯形棱镜的最大相对下降:概率,崩溃期权定价,和风险
最大递减(MDD)和最大相对递减(MrDD)在项目组合管理和绩效评估中是众所周知的。它们也可以构成止损策略的基础。但是,对于MrDD (MDD)在一段时间内达到某个正阈值的概率,没有封闭形式的公式。本文的重点是MrDD,并采用随机漫步来近似价格的潜在几何布朗运动(GBM),注意匹配更快收敛的阈值。设n为时间步数。本文提出了一个0 (n1.5)大小的梯形来计算上述概率。梯形可以用数字收益准确地为崩盘期权定价。本文进一步提出了一个0 (n2.5)大小的梯形棱镜,对具有重置收益的崩盘期权进行准确定价,并计算基于mrdd的止损策略的期望收益率和常见风险度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信