Enhancing the Ramsey contrast of an NV-ensemble in diamond using quantum optimal control

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Isabell Jauch, Artur Skljarow, Thomas Strohm, Florian Dolde, Tino Fuchs and Fedor Jelezko
{"title":"Enhancing the Ramsey contrast of an NV-ensemble in diamond using quantum optimal control","authors":"Isabell Jauch, Artur Skljarow, Thomas Strohm, Florian Dolde, Tino Fuchs and Fedor Jelezko","doi":"10.1088/2058-9565/adffb2","DOIUrl":null,"url":null,"abstract":"Negatively charged nitrogen-vacancy (NV) centers in diamonds are commonly used in quantum magnetometry. However, the potential of this approach is often limited by the inhomogeneity of the driving field. In this study, we explore the potential of closed-loop quantum optimal control to improve DC Ramsey magnetometry with NV-ensembles suffering from inhomogeneous microwave (MW) fields and MW power limitations. We demonstrate an improvement of the optically detected Ramsey contrast up to a factor of 3.13. This enables noticeable power savings for miniaturized devices without loss in magnetometry performance. Additionally, we show a recovery of 86.3% of the Ramsey contrast in presence of a five times less homogeneous MW field compared to the homogeneous field of a MW Helmholtz coil pair.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"28 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adffb2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Negatively charged nitrogen-vacancy (NV) centers in diamonds are commonly used in quantum magnetometry. However, the potential of this approach is often limited by the inhomogeneity of the driving field. In this study, we explore the potential of closed-loop quantum optimal control to improve DC Ramsey magnetometry with NV-ensembles suffering from inhomogeneous microwave (MW) fields and MW power limitations. We demonstrate an improvement of the optically detected Ramsey contrast up to a factor of 3.13. This enables noticeable power savings for miniaturized devices without loss in magnetometry performance. Additionally, we show a recovery of 86.3% of the Ramsey contrast in presence of a five times less homogeneous MW field compared to the homogeneous field of a MW Helmholtz coil pair.
利用量子最优控制增强金刚石中nv系综的Ramsey对比度
金刚石中带负电荷的氮空位(NV)中心通常用于量子磁强计。然而,这种方法的潜力往往受到驱动领域的不均匀性的限制。在这项研究中,我们探索了闭环量子最优控制的潜力,以改善受非均匀微波(MW)场和MW功率限制的nv系综的直流拉姆齐磁强计。我们证明了光学检测的拉姆齐对比度提高了3.13倍。这使得小型化设备在不损失磁强计性能的情况下可以显著节省功率。此外,我们还发现,与毫瓦亥姆霍兹线圈对的均匀场相比,在毫瓦均匀场少5倍的情况下,Ramsey对比的回收率为86.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信