Precise Identification of Gastric Cancer Pathological Differentiation Based on Hyperspectral Imaging and Lightweight Deep Learning Models.

IF 2.3
Yutao Ma, Ruoyu Zhou, Zhengshuai Jiang, Chongxuan Tian, Rui Meng, Shuyan Zhang, Wei Li, Hongbo Ren
{"title":"Precise Identification of Gastric Cancer Pathological Differentiation Based on Hyperspectral Imaging and Lightweight Deep Learning Models.","authors":"Yutao Ma, Ruoyu Zhou, Zhengshuai Jiang, Chongxuan Tian, Rui Meng, Shuyan Zhang, Wei Li, Hongbo Ren","doi":"10.1002/jbio.202500242","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate classification of gastric cancer differentiation is crucial for prognosis and treatment decisions. In this study, we propose a lightweight deep learning model-Improved Deep Residual Network (IDRN)-combined with hyperspectral imaging (HSI) to achieve precise identification of gastric cancer tissues. The model incorporates spectral preprocessing, dimensionality reduction, and a residual CNN with attention mechanisms to enhance feature extraction while maintaining efficiency. Comparative experiments with SVM, ResNet50, and ViT models show that IDRN achieves superior performance, particularly in identifying poorly differentiated tissues. Our approach provides a promising tool for computer-aided diagnosis and offers potential for clinical translation.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500242"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification of gastric cancer differentiation is crucial for prognosis and treatment decisions. In this study, we propose a lightweight deep learning model-Improved Deep Residual Network (IDRN)-combined with hyperspectral imaging (HSI) to achieve precise identification of gastric cancer tissues. The model incorporates spectral preprocessing, dimensionality reduction, and a residual CNN with attention mechanisms to enhance feature extraction while maintaining efficiency. Comparative experiments with SVM, ResNet50, and ViT models show that IDRN achieves superior performance, particularly in identifying poorly differentiated tissues. Our approach provides a promising tool for computer-aided diagnosis and offers potential for clinical translation.

基于高光谱成像和轻量级深度学习模型的胃癌病理分化精确识别。
胃癌的准确分类对预后和治疗决策至关重要。在这项研究中,我们提出了一种轻量级的深度学习模型-改进的深度残差网络(IDRN)-结合高光谱成像(HSI)来实现胃癌组织的精确识别。该模型结合了光谱预处理、降维和带有注意机制的残差CNN,在保持效率的同时增强了特征提取。与SVM、ResNet50和ViT模型的对比实验表明,IDRN在识别低分化组织方面取得了更好的性能。我们的方法为计算机辅助诊断提供了一个有前途的工具,并提供了临床转化的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信