Response to biologics along a gradient of T2 involvement in patients with severe asthma: a data-driven biomarker clustering approach.

IF 6.6 1区 医学 Q1 ALLERGY
Eileen Wang, William Henley, Désirée Larenas-Linnemann, Lakmini Bulathsinhala, Trung N Tran, Michael E Wechsler, Shawn D Aaron, Mona Al-Ahmad, Riyad Al-Lehebi, Alan Altraja, Peter Barker, Aaron Beastall, Andrey S Belevskiy, Celine Bergeron, Leif Bjermer, Unnur S Björnsdóttir, Sinthia Z Bosnic-Anticevich, Arnaud Bourdin, Guy G Brusselle, John Busby, Giorgio Walter Canonica, Victoria Carter, Kenneth R Chapman, Nicholas Chapman, George C Christoff, Borja G Cosio, Richard W Costello, James Fingleton, João A Ioa Fonseca, Mina Gaga, Peter G Gibson, Susanne Hansen, Liam G Heaney, Enrico Heffler, Mark Hew, Takahiko Horiguchi, Flavia Hoyte, Richard B Hubbard, Takashi Iwanaga, David J Jackson, Rohit Katial, Mariko Siyue Koh, Konstantinos Kostikas, Piotr Kuna, Sverre Lehmann, Lauri Lehtimäki, Renaud Louis, Dóra Lúdvíksdóttir, Njira Lugogo, Bassam Mahboub, Neil Martin, Jorge Máspero, Andrew N Menzies-Gow, Arjun Mohan, Ruth B Murray, Tatsuya Nagano, Nikolaos G Papadopoulos, Andriana I Papaioannou, Pujan H Patel, Luis Perez-de-Llano, Diahn-Warng Perng, Matthew J Peters, Paul E Pfeffer, Paulo Márcio Pitrez, Roy Alton Pleasants, Todor A Popov, Celeste M Porsbjerg, Francesca Puggioni, Anna Quinton, Chin Kook Rhee, Mohsen Sadatsafavi, Sundeep Salvi, Giulia Scioscia, Chau-Chyun Sheu, Concetta Sirena, Camille Taillé, Christian Taube, Carlos A Torres-Duque, Ming-Ju Tsai, Alf Tunsäter, Charlotte Suppli Ulrik, David B Price
{"title":"Response to biologics along a gradient of T2 involvement in patients with severe asthma: a data-driven biomarker clustering approach.","authors":"Eileen Wang, William Henley, Désirée Larenas-Linnemann, Lakmini Bulathsinhala, Trung N Tran, Michael E Wechsler, Shawn D Aaron, Mona Al-Ahmad, Riyad Al-Lehebi, Alan Altraja, Peter Barker, Aaron Beastall, Andrey S Belevskiy, Celine Bergeron, Leif Bjermer, Unnur S Björnsdóttir, Sinthia Z Bosnic-Anticevich, Arnaud Bourdin, Guy G Brusselle, John Busby, Giorgio Walter Canonica, Victoria Carter, Kenneth R Chapman, Nicholas Chapman, George C Christoff, Borja G Cosio, Richard W Costello, James Fingleton, João A Ioa Fonseca, Mina Gaga, Peter G Gibson, Susanne Hansen, Liam G Heaney, Enrico Heffler, Mark Hew, Takahiko Horiguchi, Flavia Hoyte, Richard B Hubbard, Takashi Iwanaga, David J Jackson, Rohit Katial, Mariko Siyue Koh, Konstantinos Kostikas, Piotr Kuna, Sverre Lehmann, Lauri Lehtimäki, Renaud Louis, Dóra Lúdvíksdóttir, Njira Lugogo, Bassam Mahboub, Neil Martin, Jorge Máspero, Andrew N Menzies-Gow, Arjun Mohan, Ruth B Murray, Tatsuya Nagano, Nikolaos G Papadopoulos, Andriana I Papaioannou, Pujan H Patel, Luis Perez-de-Llano, Diahn-Warng Perng, Matthew J Peters, Paul E Pfeffer, Paulo Márcio Pitrez, Roy Alton Pleasants, Todor A Popov, Celeste M Porsbjerg, Francesca Puggioni, Anna Quinton, Chin Kook Rhee, Mohsen Sadatsafavi, Sundeep Salvi, Giulia Scioscia, Chau-Chyun Sheu, Concetta Sirena, Camille Taillé, Christian Taube, Carlos A Torres-Duque, Ming-Ju Tsai, Alf Tunsäter, Charlotte Suppli Ulrik, David B Price","doi":"10.1016/j.jaip.2025.08.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Asthma with low levels of T2-biomarkers is poorly understood.</p><p><strong>Objective: </strong>To characterize severe asthma phenotypes and compare pre- to post-biologic change in asthma outcomes along a gradient of T2-involvement.</p><p><strong>Methods: </strong>This was a registry-based, cohort study including data from 24 countries. Biomarker distribution (BEC, FeNO, IgE) was quantified pre-biologic initiation. Clusters were identified using a five-component Gaussian finite mixture model and phenotypically characterized. Change in asthma and healthcare utilization outcomes between 1-year pre- and post-biologic initiation were compared between clusters and by biologic class.</p><p><strong>Results: </strong>Amongst 3,675 patients Five biomarker clusters) were identified along a gradient of T2-involvement: Cluster A with the lowest T2-involvement (16.4%), Cluster B (20.4%), Cluster C (22.9%), Cluster D (30.3%), and cluster E with the highest T2-involvement (10.0%). In multivariable analysis, biologic use was associated with improved outcomes in all clusters but tended to be better at the higher end of the T2 spectrum. For example, patients in cluster C had a significantly greater increase in FEV<sub>1</sub> relative to cluster A (difference 0.16L [95% CI 0.08, 0.25]; p<0.001). The odds of uncontrolled asthma were approximately 0.6 for all clusters relative to cluster A.Overall, exacerbation rates were lower and greater improvements in lung function and asthma control were noted for anti-IL-5/5R (but not anti-IgE or anti-IL4Rα) for all clusters relative to cluster A.</p><p><strong>Conclusion: </strong>T2-targeting biologics have utility in the management of asthma with low T2 involvement, but more effective therapies are needed. Further research is warranted to identify specific pathogenic pathways at the lower end of the T2 spectrum that can be effectively targeted by biologics.</p>","PeriodicalId":51323,"journal":{"name":"Journal of Allergy and Clinical Immunology-In Practice","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Allergy and Clinical Immunology-In Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jaip.2025.08.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Asthma with low levels of T2-biomarkers is poorly understood.

Objective: To characterize severe asthma phenotypes and compare pre- to post-biologic change in asthma outcomes along a gradient of T2-involvement.

Methods: This was a registry-based, cohort study including data from 24 countries. Biomarker distribution (BEC, FeNO, IgE) was quantified pre-biologic initiation. Clusters were identified using a five-component Gaussian finite mixture model and phenotypically characterized. Change in asthma and healthcare utilization outcomes between 1-year pre- and post-biologic initiation were compared between clusters and by biologic class.

Results: Amongst 3,675 patients Five biomarker clusters) were identified along a gradient of T2-involvement: Cluster A with the lowest T2-involvement (16.4%), Cluster B (20.4%), Cluster C (22.9%), Cluster D (30.3%), and cluster E with the highest T2-involvement (10.0%). In multivariable analysis, biologic use was associated with improved outcomes in all clusters but tended to be better at the higher end of the T2 spectrum. For example, patients in cluster C had a significantly greater increase in FEV1 relative to cluster A (difference 0.16L [95% CI 0.08, 0.25]; p<0.001). The odds of uncontrolled asthma were approximately 0.6 for all clusters relative to cluster A.Overall, exacerbation rates were lower and greater improvements in lung function and asthma control were noted for anti-IL-5/5R (but not anti-IgE or anti-IL4Rα) for all clusters relative to cluster A.

Conclusion: T2-targeting biologics have utility in the management of asthma with low T2 involvement, but more effective therapies are needed. Further research is warranted to identify specific pathogenic pathways at the lower end of the T2 spectrum that can be effectively targeted by biologics.

重度哮喘患者对T2累及梯度生物制剂的反应:数据驱动的生物标志物聚类方法
背景:对低水平t2生物标志物的哮喘了解甚少。目的:描述严重哮喘的表型特征,并沿着t2受累的梯度比较哮喘结局的生物学前和生物学后变化。方法:这是一项基于登记的队列研究,包括来自24个国家的数据。生物标志物分布(BEC, FeNO, IgE)在生物起始前被量化。使用五组分高斯有限混合模型识别聚类并进行表型表征。在1年内,哮喘和医疗保健利用结果的变化在生物制剂开始前后进行了分组和按生物制剂类别的比较。结果:在3,675例患者中,沿t2受累程度的梯度确定了5个生物标志物簇:a簇t2受累最低(16.4%),B簇(20.4%),C簇(22.9%),D簇(30.3%)和E簇t2受累最高(10.0%)。在多变量分析中,生物制剂的使用与所有群集的预后改善相关,但在T2谱的高端往往更好。例如,C类患者的FEV1明显高于a类患者(差异0.16L [95% CI 0.08, 0.25])。结论:T2靶向生物制剂在低T2累及的哮喘治疗中具有实用价值,但需要更有效的治疗方法。需要进一步的研究来确定T2谱低端的特定致病途径,这些途径可以被生物制剂有效靶向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.10
自引率
9.60%
发文量
683
审稿时长
50 days
期刊介绍: JACI: In Practice is an official publication of the American Academy of Allergy, Asthma & Immunology (AAAAI). It is a companion title to The Journal of Allergy and Clinical Immunology, and it aims to provide timely clinical papers, case reports, and management recommendations to clinical allergists and other physicians dealing with allergic and immunologic diseases in their practice. The mission of JACI: In Practice is to offer valid and impactful information that supports evidence-based clinical decisions in the diagnosis and management of asthma, allergies, immunologic conditions, and related diseases. This journal publishes articles on various conditions treated by allergist-immunologists, including food allergy, respiratory disorders (such as asthma, rhinitis, nasal polyps, sinusitis, cough, ABPA, and hypersensitivity pneumonitis), drug allergy, insect sting allergy, anaphylaxis, dermatologic disorders (such as atopic dermatitis, contact dermatitis, urticaria, angioedema, and HAE), immunodeficiency, autoinflammatory syndromes, eosinophilic disorders, and mast cell disorders. The focus of the journal is on providing cutting-edge clinical information that practitioners can use in their everyday practice or to acquire new knowledge and skills for the benefit of their patients. However, mechanistic or translational studies without immediate or near future clinical relevance, as well as animal studies, are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信