{"title":"Design of a Multi-Epitope Vaccine using β-barrel Outer Membrane Proteins Identified in Chlamydia trachomatis.","authors":"Amisha Panda, Jahnvi Kapoor, B Hareramadas, Ilmas Naqvi, Satish Ganta, Ravindresh Chhabra, Sanjiv Kumar, Anannya Bandyopadhyay","doi":"10.1007/s00232-025-00360-5","DOIUrl":null,"url":null,"abstract":"<p><p>Chlamydia trachomatis is an obligate intracellular Gram-negative pathogen that causes sexually transmitted infections (STIs) and trachoma. Current interventions are limited due to the widespread nature of asymptomatic infections, and the absence of a licensed vaccine exacerbates the challenge. In this study, we predicted outer membrane β-barrel (OMBB) proteins and designed a multi-epitope vaccine (MEV) construct using identified proteins. We employed a consensus-based computational framework on the C. trachomatis D/UW-3/CX proteome and identified 17 OMBB proteins, including well-known Pmp family members and MOMP. Eight OMBB proteins were computationally characterized, showing significant structural homology with known outer membrane proteins from other bacteria. Sequence-based annotation tools were used to determine their putative functions. B-cell and T-cell epitopes were predicted from the selected proteins. The MEV construct was designed using four cytotoxic T-lymphocyte (CTL) epitopes and 29 helper T-lymphocyte (HTL) epitopes from six OMBB proteins, which were conserved across 106 C. trachomatis serovars. To enhance its immunogenicity, the vaccine was supplemented with the Cholera toxin B subunit and PADRE sequence at the N-terminus. The MEV construct, of length 780 amino acids, was predicted to be antigenic, non-allergenic, non-toxic, and soluble. Secondary structure analysis revealed 95% random coils. A three-dimensional structural model of the MEV was generated and subsequently validated. Molecular docking between MEV and toll-like receptor 4 (TLR4) revealed strong and stable binding interactions. The MEV-TLR4 complex was found to be structurally compact and stable using molecular dynamics simulation. Immune simulation of the MEV construct elicited a strong immune response. This study highlights OMBB proteins as promising immunogenic targets and presents a computationally designed MEV candidate for C. trachomatis infection.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-025-00360-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlamydia trachomatis is an obligate intracellular Gram-negative pathogen that causes sexually transmitted infections (STIs) and trachoma. Current interventions are limited due to the widespread nature of asymptomatic infections, and the absence of a licensed vaccine exacerbates the challenge. In this study, we predicted outer membrane β-barrel (OMBB) proteins and designed a multi-epitope vaccine (MEV) construct using identified proteins. We employed a consensus-based computational framework on the C. trachomatis D/UW-3/CX proteome and identified 17 OMBB proteins, including well-known Pmp family members and MOMP. Eight OMBB proteins were computationally characterized, showing significant structural homology with known outer membrane proteins from other bacteria. Sequence-based annotation tools were used to determine their putative functions. B-cell and T-cell epitopes were predicted from the selected proteins. The MEV construct was designed using four cytotoxic T-lymphocyte (CTL) epitopes and 29 helper T-lymphocyte (HTL) epitopes from six OMBB proteins, which were conserved across 106 C. trachomatis serovars. To enhance its immunogenicity, the vaccine was supplemented with the Cholera toxin B subunit and PADRE sequence at the N-terminus. The MEV construct, of length 780 amino acids, was predicted to be antigenic, non-allergenic, non-toxic, and soluble. Secondary structure analysis revealed 95% random coils. A three-dimensional structural model of the MEV was generated and subsequently validated. Molecular docking between MEV and toll-like receptor 4 (TLR4) revealed strong and stable binding interactions. The MEV-TLR4 complex was found to be structurally compact and stable using molecular dynamics simulation. Immune simulation of the MEV construct elicited a strong immune response. This study highlights OMBB proteins as promising immunogenic targets and presents a computationally designed MEV candidate for C. trachomatis infection.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.