Yarong Wang, Bin Xia, Qiong Lin, Huan Wang, Zhiyong Wu, Haiqing Zhang, Zhe Zhou, Zhenli Yan, Qiming Gao, Xiangzhan Zhang, Suke Wang, Zhenzhen Liu, Xiangpeng Meng, Yaru Zhang, Andrew P Gleave, Hengtao Zhang, Jia-Long Yao
{"title":"Convergent domestication of bitter apples and pears by selecting mutations of MYB transcription factors to reduce proanthocyanidin levels.","authors":"Yarong Wang, Bin Xia, Qiong Lin, Huan Wang, Zhiyong Wu, Haiqing Zhang, Zhe Zhou, Zhenli Yan, Qiming Gao, Xiangzhan Zhang, Suke Wang, Zhenzhen Liu, Xiangpeng Meng, Yaru Zhang, Andrew P Gleave, Hengtao Zhang, Jia-Long Yao","doi":"10.1186/s43897-025-00173-z","DOIUrl":null,"url":null,"abstract":"<p><p>Fruit domestication has long aimed to reduce bitterness, yet the molecular mechanisms behind this trait remain only partially understood. Wild apples and pears naturally accumulate high levels of bitter proanthocyanidins (PAs), also known as condensed tannins. In this study, a convergent domestication process was identified in both fruits, involving the selection of weak alleles of MYB transcription factors that regulate PA biosynthesis. In apples, domestication targeted the MYB-Tannin-Tamer (MdMYBTT) gene. A 411-base pair transposable element inserted into the third exon of this gene in cultivated varieties produced a truncated, non-functional protein unable to activate the PA biosynthetic gene Anthocyanidin Reductase 1 (ANR1). The resulting mdmybtt allele led to reduced PA levels and was fixed in domesticated apples through positive selection. Likewise, in pears, a 57-base pair insertion in the promoter of the MYBPA1 gene suppressed its expression in cultivated varieties, limiting PA production. This insertion created the mybpa1 allele, which was similarly fixed during pear domestication. These findings highlight a shared evolutionary strategy to reduce fruit bitterness by selecting mutations that suppress PA synthesis. These findings offer valuable insights into the molecular basis of domestication and inform breeding efforts to optimize both flavor and nutritional quality.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"51"},"PeriodicalIF":8.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00173-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Fruit domestication has long aimed to reduce bitterness, yet the molecular mechanisms behind this trait remain only partially understood. Wild apples and pears naturally accumulate high levels of bitter proanthocyanidins (PAs), also known as condensed tannins. In this study, a convergent domestication process was identified in both fruits, involving the selection of weak alleles of MYB transcription factors that regulate PA biosynthesis. In apples, domestication targeted the MYB-Tannin-Tamer (MdMYBTT) gene. A 411-base pair transposable element inserted into the third exon of this gene in cultivated varieties produced a truncated, non-functional protein unable to activate the PA biosynthetic gene Anthocyanidin Reductase 1 (ANR1). The resulting mdmybtt allele led to reduced PA levels and was fixed in domesticated apples through positive selection. Likewise, in pears, a 57-base pair insertion in the promoter of the MYBPA1 gene suppressed its expression in cultivated varieties, limiting PA production. This insertion created the mybpa1 allele, which was similarly fixed during pear domestication. These findings highlight a shared evolutionary strategy to reduce fruit bitterness by selecting mutations that suppress PA synthesis. These findings offer valuable insights into the molecular basis of domestication and inform breeding efforts to optimize both flavor and nutritional quality.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.