Robust and adaptive non-parametric tests for detecting general distributional shifts in gene expression.

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-09-15 Epub Date: 2025-09-02 DOI:10.1016/j.crmeth.2025.101147
Fanding Zhou, Alan J Aw, Dan D Erdmann-Pham, Jonathan Fischer, Yun S Song
{"title":"Robust and adaptive non-parametric tests for detecting general distributional shifts in gene expression.","authors":"Fanding Zhou, Alan J Aw, Dan D Erdmann-Pham, Jonathan Fischer, Yun S Song","doi":"10.1016/j.crmeth.2025.101147","DOIUrl":null,"url":null,"abstract":"<p><p>Differential expression analysis is crucial in genomics, yet most methods focus only on mean shifts. Variance shifts in gene expression-especially in cellular signaling and aging-are increasingly recognized as being biologically important. We present QRscore (quantile rank score), a general non-parametric framework that extends the Mann-Whitney test to detect both mean and variance shifts through model-informed weights derived from negative binomial (NB) and zero-inflated NB (ZINB) distributions. QRscore offers high statistical power with false discovery rate (FDR) control, surpassing existing methods in detecting both types of distributional changes. When applied to bulk RNA sequencing (RNA-seq) data from Genotype-Tissue Expression (GTEx), QRscore uncovers numerous genes with dispersion shifts that are missed by mean-shift analysis. In pseudo-bulked single-cell RNA-seq data from the Asian Immune Diversity Atlas (AIDA), QRscore further reveals cell-type-specific variance shifts across age groups that remain undetectable in bulk analyses. QRscore augments the genome bioinformatics toolkit by offering a powerful and flexible approach for differential expression analysis.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101147"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Differential expression analysis is crucial in genomics, yet most methods focus only on mean shifts. Variance shifts in gene expression-especially in cellular signaling and aging-are increasingly recognized as being biologically important. We present QRscore (quantile rank score), a general non-parametric framework that extends the Mann-Whitney test to detect both mean and variance shifts through model-informed weights derived from negative binomial (NB) and zero-inflated NB (ZINB) distributions. QRscore offers high statistical power with false discovery rate (FDR) control, surpassing existing methods in detecting both types of distributional changes. When applied to bulk RNA sequencing (RNA-seq) data from Genotype-Tissue Expression (GTEx), QRscore uncovers numerous genes with dispersion shifts that are missed by mean-shift analysis. In pseudo-bulked single-cell RNA-seq data from the Asian Immune Diversity Atlas (AIDA), QRscore further reveals cell-type-specific variance shifts across age groups that remain undetectable in bulk analyses. QRscore augments the genome bioinformatics toolkit by offering a powerful and flexible approach for differential expression analysis.

用于检测基因表达一般分布变化的鲁棒和自适应非参数测试。
差异表达分析在基因组学中是至关重要的,然而大多数方法只关注平均值的变化。基因表达的变异——尤其是在细胞信号传导和衰老过程中——越来越被认为在生物学上是重要的。我们提出QRscore(分位数秩得分),这是一个一般的非参数框架,它扩展了Mann-Whitney检验,通过从负二项(NB)和零膨胀NB (ZINB)分布中获得的模型通知权重来检测均值和方差的移动。QRscore具有很高的统计能力和错误发现率(FDR)控制,在检测这两种类型的分布变化方面超越了现有的方法。当应用于来自基因型-组织表达(GTEx)的大量RNA测序(RNA-seq)数据时,QRscore揭示了许多具有分散位移的基因,这些基因在平均位移分析中被遗漏了。在来自亚洲免疫多样性图谱(AIDA)的伪散装单细胞RNA-seq数据中,QRscore进一步揭示了在批量分析中无法检测到的细胞类型特异性变异在年龄组中的变化。QRscore通过提供一种强大而灵活的差异表达分析方法,增强了基因组生物信息学工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信