Smart dosing: revolutionizing uveal melanoma treatment with AI.

IF 1.6 Q2 MEDICINE, GENERAL & INTERNAL
Annals of Medicine and Surgery Pub Date : 2025-08-01 eCollection Date: 2025-09-01 DOI:10.1097/MS9.0000000000003669
Omaima Ibrahim, Maliha Khalid, Muhammad Talha, Aminath Waafira
{"title":"Smart dosing: revolutionizing uveal melanoma treatment with AI.","authors":"Omaima Ibrahim, Maliha Khalid, Muhammad Talha, Aminath Waafira","doi":"10.1097/MS9.0000000000003669","DOIUrl":null,"url":null,"abstract":"<p><p>Uveal melanoma, the most common primary intraocular malignancy in adults, presents a significant challenge due to its high metastatic potential and the need to preserve vision during treatment. While conventional therapies such as plaque brachytherapy and proton beam radiation aim to balance tumor control with ocular preservation, recent advances in artificial intelligence (AI) and machine learning (ML) offer transformative potential in personalizing radiation dosing. By integrating radiologic features with genomic markers such as BAP1 mutations, monosomy 3, and chromosome 8q gain, AI models can predict tumor radiosensitivity and guide dose modulation based on individual tumor biology. This precision approach may enhance treatment efficacy while minimizing toxicity to surrounding ocular structures. However, the deployment of AI in clinical oncology also raises ethical concerns, including the risk of algorithmic bias and the need for data diversity, regulatory oversight, and interdisciplinary collaboration. Responsible integration of AI into radiation oncology could redefine treatment strategies for uveal melanoma, ushering in a new era of radiogenomics-driven precision medicine.</p>","PeriodicalId":8025,"journal":{"name":"Annals of Medicine and Surgery","volume":"87 9","pages":"6238-6239"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Medicine and Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/MS9.0000000000003669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Uveal melanoma, the most common primary intraocular malignancy in adults, presents a significant challenge due to its high metastatic potential and the need to preserve vision during treatment. While conventional therapies such as plaque brachytherapy and proton beam radiation aim to balance tumor control with ocular preservation, recent advances in artificial intelligence (AI) and machine learning (ML) offer transformative potential in personalizing radiation dosing. By integrating radiologic features with genomic markers such as BAP1 mutations, monosomy 3, and chromosome 8q gain, AI models can predict tumor radiosensitivity and guide dose modulation based on individual tumor biology. This precision approach may enhance treatment efficacy while minimizing toxicity to surrounding ocular structures. However, the deployment of AI in clinical oncology also raises ethical concerns, including the risk of algorithmic bias and the need for data diversity, regulatory oversight, and interdisciplinary collaboration. Responsible integration of AI into radiation oncology could redefine treatment strategies for uveal melanoma, ushering in a new era of radiogenomics-driven precision medicine.

智能给药:用人工智能革新葡萄膜黑色素瘤治疗。
葡萄膜黑色素瘤是成人最常见的原发性眼内恶性肿瘤,由于其高转移潜力和在治疗过程中需要保持视力,因此提出了重大挑战。虽然斑块近距离治疗和质子束放射等传统疗法旨在平衡肿瘤控制与眼部保护,但人工智能(AI)和机器学习(ML)的最新进展为个性化放射剂量提供了变革潜力。通过将放射学特征与基因组标记(如BAP1突变、单体3和染色体8q增益)相结合,AI模型可以预测肿瘤的放射敏感性,并根据个体肿瘤生物学指导剂量调节。这种精确的方法可以提高治疗效果,同时尽量减少对周围眼部结构的毒性。然而,人工智能在临床肿瘤学中的应用也引发了伦理问题,包括算法偏见的风险、对数据多样性、监管监督和跨学科合作的需求。将人工智能负责任地整合到放射肿瘤学中,可以重新定义葡萄膜黑色素瘤的治疗策略,开启放射基因组学驱动的精准医学的新时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Medicine and Surgery
Annals of Medicine and Surgery MEDICINE, GENERAL & INTERNAL-
自引率
5.90%
发文量
1665
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信