Adam L Crane, Laurence E A Feyten, Alix J P Brusseau, Félixe Dumaresq Synnott, Indar W Ramnarine, Maud C O Ferrari, Grant E Brown
{"title":"Anxiolytic effects of diazepam in Trinidadian guppies exposed to chemical cues indicating predation risk.","authors":"Adam L Crane, Laurence E A Feyten, Alix J P Brusseau, Félixe Dumaresq Synnott, Indar W Ramnarine, Maud C O Ferrari, Grant E Brown","doi":"10.1097/FBP.0000000000000847","DOIUrl":null,"url":null,"abstract":"<p><p>The fear of predation is pervasive among vertebrate prey species, being characterized by neurobiological and behavioral changes induced by risk exposure. To understand the acquisition and attenuation of fearful phenotypes, such as dimensions of posttraumatic stress, researchers often use animal models, with prey fishes recently emerging as a nontraditional but promising model. Much is known about fear acquisition in prey fishes such as the Trinidadian guppy, Poecilia reticulata, which inhabit high and low predation sites. Little is known, however, about whether a guppy model shows fear attenuation via therapeutic treatments, such as commonly prescribed anxiolytic drugs, like benzodiazepines. In this study, we used Trinidadian guppies from wild populations to explore the interactive effects of exposure to the anxiolytic drug, diazepam, and exposure to predation risk in the form of injured conspecific cues (i.e. alarm cues) that reliably indicate a predator attack. In Experiment 1, juvenile guppies from both high- and low-predation populations were given a 10-min exposure to diazepam (160 µg/l), resulting in the loss of fear behavior when simultaneously presented with alarm cues. In Experiment 2, we found that a prior 10-min exposure to diazepam (160 µg/l) for adult guppies significantly reduced their subsequent fear behavior toward a separate exposure to alarm cues, revealing that diazepam was having direct effects on guppy cognition rather than simply inactivating the alarm cues via chemical alteration. These anxiolytic effects thus add to the growing support for the predictive validity of prey fishes as animal models for exploring fear attenuation in humans.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000847","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The fear of predation is pervasive among vertebrate prey species, being characterized by neurobiological and behavioral changes induced by risk exposure. To understand the acquisition and attenuation of fearful phenotypes, such as dimensions of posttraumatic stress, researchers often use animal models, with prey fishes recently emerging as a nontraditional but promising model. Much is known about fear acquisition in prey fishes such as the Trinidadian guppy, Poecilia reticulata, which inhabit high and low predation sites. Little is known, however, about whether a guppy model shows fear attenuation via therapeutic treatments, such as commonly prescribed anxiolytic drugs, like benzodiazepines. In this study, we used Trinidadian guppies from wild populations to explore the interactive effects of exposure to the anxiolytic drug, diazepam, and exposure to predation risk in the form of injured conspecific cues (i.e. alarm cues) that reliably indicate a predator attack. In Experiment 1, juvenile guppies from both high- and low-predation populations were given a 10-min exposure to diazepam (160 µg/l), resulting in the loss of fear behavior when simultaneously presented with alarm cues. In Experiment 2, we found that a prior 10-min exposure to diazepam (160 µg/l) for adult guppies significantly reduced their subsequent fear behavior toward a separate exposure to alarm cues, revealing that diazepam was having direct effects on guppy cognition rather than simply inactivating the alarm cues via chemical alteration. These anxiolytic effects thus add to the growing support for the predictive validity of prey fishes as animal models for exploring fear attenuation in humans.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.