{"title":"Fueling the Mind: Brain Metabolism in Health and Neurodevelopmental Disorders.","authors":"Domenico Marano, Vittoria Mariano, Gaia Novarino","doi":"10.1146/annurev-genet-111523-102424","DOIUrl":null,"url":null,"abstract":"<p><p>The adult human brain, under resting conditions, consumes approximately 20% of total body glucose, a demand that is even higher during the first decade of life. The brain metabolic landscape is intricately regulated throughout development, and each cell type exhibits distinct metabolic signatures at each specific stage. This picture becomes even more intricate when considering that metabolism is dynamically modulated to sustain critical biological processes, such as cell proliferation and differentiation and synaptic activity-dependent processes. The orchestration between metabolic regulation and the aforementioned physiological processes often relies on metabolism-dependent changes in the epigenetic landscape, which shape gene expression patterns to trigger selected downstream biological responses. Perturbations of brain metabolic pathways are frequently the cause of severe neurodevelopmental disorders. This review explores the latest insights into the regulation of brain metabolism in health and disease.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-111523-102424","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The adult human brain, under resting conditions, consumes approximately 20% of total body glucose, a demand that is even higher during the first decade of life. The brain metabolic landscape is intricately regulated throughout development, and each cell type exhibits distinct metabolic signatures at each specific stage. This picture becomes even more intricate when considering that metabolism is dynamically modulated to sustain critical biological processes, such as cell proliferation and differentiation and synaptic activity-dependent processes. The orchestration between metabolic regulation and the aforementioned physiological processes often relies on metabolism-dependent changes in the epigenetic landscape, which shape gene expression patterns to trigger selected downstream biological responses. Perturbations of brain metabolic pathways are frequently the cause of severe neurodevelopmental disorders. This review explores the latest insights into the regulation of brain metabolism in health and disease.
期刊介绍:
The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.