Composite Gel Electrolytes with Ion-Mediated Compatibilization and Matrix-Assisted Conduction for Wide-Temperature Lithium Metal Batteries.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Bingxin Qi, Chi Wang, Hanpei Liu, Xiaoyue Li, Wen Yan, Chao Lai
{"title":"Composite Gel Electrolytes with Ion-Mediated Compatibilization and Matrix-Assisted Conduction for Wide-Temperature Lithium Metal Batteries.","authors":"Bingxin Qi, Chi Wang, Hanpei Liu, Xiaoyue Li, Wen Yan, Chao Lai","doi":"10.1002/smtd.202501229","DOIUrl":null,"url":null,"abstract":"<p><p>Gel polymer electrolytes (GPEs) with solvent-in-polymer structure typically encounter a trade-off between ionic conductivity and mechanical properties. This challenge has not been adequately addressed by conventional single-material, miscible polymers, or polymer/ceramic composite electrolytes. Herein, the phase consistency of composite GPE matrix, which contains polymer blends of \"soft\" poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF) and \"hard\" polyether-ether-ketone (PEEK), is enhanced by ion-mediated compatibilization through the incorporation of lithium sulfonate groups. In addition, the electrolyte's ionic environment is optimized by the pendent lithium sulfonate positioned at the interface between polymer-rich and solvent-rich domains, thus achieving high ionic conductivity of 1.87 mS cm<sup>-1</sup> at 20 °C and 1.28 mS cm<sup>-1</sup> at -20 °C via the matrix-assisted conduction. As a consequence, the composite gel electrolyte confers the Li||LiFePO<sub>4</sub> battery with high discharge capacity of 157.0 mAh g<sup>-1</sup> at 1 C and capacity retention of 90.7% after 1500 cycles, and superior electrochemical performance under harsh conditions, including high rate of 5 C (96.0% capacity retention after 1000 cycles), extreme temperatures from -20 °C to 80 °C, and in conjunction with 30-µm lithium metal anode. This work advances the development of high-performance gel polymer electrolytes through innovative nanostructure and molecule design.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01229"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501229","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gel polymer electrolytes (GPEs) with solvent-in-polymer structure typically encounter a trade-off between ionic conductivity and mechanical properties. This challenge has not been adequately addressed by conventional single-material, miscible polymers, or polymer/ceramic composite electrolytes. Herein, the phase consistency of composite GPE matrix, which contains polymer blends of "soft" poly(vinylidene fluoride-co-hexafluoropropylene) (PVHF) and "hard" polyether-ether-ketone (PEEK), is enhanced by ion-mediated compatibilization through the incorporation of lithium sulfonate groups. In addition, the electrolyte's ionic environment is optimized by the pendent lithium sulfonate positioned at the interface between polymer-rich and solvent-rich domains, thus achieving high ionic conductivity of 1.87 mS cm-1 at 20 °C and 1.28 mS cm-1 at -20 °C via the matrix-assisted conduction. As a consequence, the composite gel electrolyte confers the Li||LiFePO4 battery with high discharge capacity of 157.0 mAh g-1 at 1 C and capacity retention of 90.7% after 1500 cycles, and superior electrochemical performance under harsh conditions, including high rate of 5 C (96.0% capacity retention after 1000 cycles), extreme temperatures from -20 °C to 80 °C, and in conjunction with 30-µm lithium metal anode. This work advances the development of high-performance gel polymer electrolytes through innovative nanostructure and molecule design.

具有离子介导相容和基质辅助传导的复合凝胶电解质用于宽温锂金属电池。
具有溶剂聚合物结构的凝胶聚合物电解质(GPEs)通常会在离子电导率和机械性能之间进行权衡。传统的单材料、混相聚合物或聚合物/陶瓷复合电解质无法充分解决这一挑战。本文中,含有“软”聚偏氟乙烯-共六氟丙烯(PVHF)和“硬”聚醚-醚酮(PEEK)的聚合物共混物的复合GPE基体的相稠度通过离子介导的增容作用通过加入磺酸锂基团来提高。此外,电解质的离子环境通过悬垂的磺酸锂位于富聚合物和富溶剂之间的界面而得到优化,从而通过基质辅助传导在20°C和-20°C时分别获得1.87 mS cm-1和1.28 mS cm-1的高离子电导率。因此,复合凝胶电解质赋予Li||LiFePO4电池在1℃下具有157.0 mAh g-1的高放电容量,1500次循环后容量保持率为90.7%,并且在恶劣条件下具有优异的电化学性能,包括高5℃倍率(1000次循环后容量保持率为96.0%),极端温度从-20°C到80°C,以及与30µm锂金属阳极结合。这项工作通过创新的纳米结构和分子设计推动了高性能凝胶聚合物电解质的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信