Biophysical characterization of polyphenol aggregates in Moringa oleifera leaves water extract: stability and surface exposure effect on antioxidant activity under dilution.

IF 2.4 4区 生物学 Q3 BIOPHYSICS
Rita Carrotta, Fabio Librizzi, Vincenzo Martorana, Samuele Raccosta, Maria Rosalia Mangione
{"title":"Biophysical characterization of polyphenol aggregates in Moringa oleifera leaves water extract: stability and surface exposure effect on antioxidant activity under dilution.","authors":"Rita Carrotta, Fabio Librizzi, Vincenzo Martorana, Samuele Raccosta, Maria Rosalia Mangione","doi":"10.1007/s00249-025-01786-4","DOIUrl":null,"url":null,"abstract":"<p><p>The aqueous extract of Moringa oleifera leaves has been previously characterized for its polyphenolic composition, yet the behavior of its colloidal aggregates under dilution remains largely unexplored. In this study, we investigate the structural and chemical properties of these aggregates at room temperature, focusing on their stability and surface exposure upon dilution. Although the aggregates break up as dilution increases, they never fully dissolve within the conditions explored. Both multi-angle static light scattering and dynamic light scattering highlight aggregates fragmentation and size heterogeneity under dilution. UV-vis absorption spectroscopic data strongly suggest that the aggregates of different sizes present in the extract are homogeneously constituted, as their spectra are similar to those of the main polyphenol components. The Folin-Ciocâlteu assay reveals an increase in gallic acid equivalent values normalized for extract concentration, suggesting that fragmentation prompted by dilution enhances the exposure of reactive sites. A very basic model, considering only one kind of aggregate with uniform density, is employed to support this interpretation. Assuming this model, the Folin-Ciocâlteu assay data allow to grasp the law regulating the change of the aggregate average size under dilution, i.e., a power law. Additionally, in-liquid atomic force microscopy imaging confirms the presence of smaller but still aggregated particles at high dilution, enabling the calculation of a height distribution, that is consistent with the model prediction. These findings provide insights into the dynamic behavior of polyphenol-rich aggregates in aqueous systems and their potential implications for bioavailability and reactivity.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01786-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aqueous extract of Moringa oleifera leaves has been previously characterized for its polyphenolic composition, yet the behavior of its colloidal aggregates under dilution remains largely unexplored. In this study, we investigate the structural and chemical properties of these aggregates at room temperature, focusing on their stability and surface exposure upon dilution. Although the aggregates break up as dilution increases, they never fully dissolve within the conditions explored. Both multi-angle static light scattering and dynamic light scattering highlight aggregates fragmentation and size heterogeneity under dilution. UV-vis absorption spectroscopic data strongly suggest that the aggregates of different sizes present in the extract are homogeneously constituted, as their spectra are similar to those of the main polyphenol components. The Folin-Ciocâlteu assay reveals an increase in gallic acid equivalent values normalized for extract concentration, suggesting that fragmentation prompted by dilution enhances the exposure of reactive sites. A very basic model, considering only one kind of aggregate with uniform density, is employed to support this interpretation. Assuming this model, the Folin-Ciocâlteu assay data allow to grasp the law regulating the change of the aggregate average size under dilution, i.e., a power law. Additionally, in-liquid atomic force microscopy imaging confirms the presence of smaller but still aggregated particles at high dilution, enabling the calculation of a height distribution, that is consistent with the model prediction. These findings provide insights into the dynamic behavior of polyphenol-rich aggregates in aqueous systems and their potential implications for bioavailability and reactivity.

辣木叶水提物中多酚聚集体的生物物理特性:稀释条件下稳定性及表面暴露对抗氧化活性的影响。
辣木叶的水萃取物先前已被表征为其多酚成分,但其胶体聚集体在稀释下的行为仍在很大程度上未被探索。在这项研究中,我们研究了这些聚集体在室温下的结构和化学性质,重点是它们的稳定性和稀释后的表面暴露。虽然随着稀释度的增加,聚集体会破裂,但在探索的条件下,它们永远不会完全溶解。多角度静态光散射和动态光散射都突出了聚集体在稀释作用下的破碎性和粒径不均一性。紫外-可见吸收光谱数据强烈表明,提取物中存在不同大小的聚集体是均匀构成的,因为它们的光谱与主要多酚成分相似。folin - cioc lteu测定显示,未食子酸当量值随提取物浓度标准化而增加,表明稀释引起的碎片增加了反应部位的暴露。一个非常基本的模型,只考虑一种密度均匀的骨料,用来支持这种解释。假设该模型,folin - cioc lteu测定数据可以把握稀释作用下总体平均粒径变化规律,即幂律。此外,液体原子力显微镜成像证实了在高稀释下存在更小但仍聚集的颗粒,从而可以计算出高度分布,这与模型预测一致。这些发现为了解水系统中富含多酚的聚集体的动态行为及其对生物利用度和反应性的潜在影响提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信