Over 19% Efficiency Polymer Solar Cells Enabled by Selectively Tuning Bulkheterojunction Morphology via a Dual-Heating Strategy.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yi Chen, Kun Li, Jing Zhang, Jichu Wu, Tiantian Zhu, Jinpeng Zhang, Haiyang Li, Yishi Wu, Donghong Yu, Chuanlang Zhan
{"title":"Over 19% Efficiency Polymer Solar Cells Enabled by Selectively Tuning Bulkheterojunction Morphology via a Dual-Heating Strategy.","authors":"Yi Chen, Kun Li, Jing Zhang, Jichu Wu, Tiantian Zhu, Jinpeng Zhang, Haiyang Li, Yishi Wu, Donghong Yu, Chuanlang Zhan","doi":"10.1002/smtd.202501159","DOIUrl":null,"url":null,"abstract":"<p><p>Photovoltaic performance of bulkheterojunction (BHJ)-based organic solar cells is critically governed by morphologies of donor:acceptor blends as light-harvesting layers. However, ideal morphological control remains challenging due to the systems' complexity. In this work, a sequential dual-heating (DH) strategy is presented to precisely tailor the BHJ morphology in a D18-Cl:Y6 system, achieving a remarkable 19.23% power conversion efficiency with enhanced device stability. The DH approach integrates a warm solution (WS) deposition and follow-on solvent-vapor annealing (SVA) by using carbon disulfide (CS<sub>2</sub>). The results show that the WS process enlarges π-π distance, enhances photoluminescence, reduces energy loss, and accelerates hole transfer, while the subsequent SVA process increases π-π displacement, thereby reducing both bimolecular and trap-assisted recombination, balancing carrier mobilities, and accelerating hole transport as well. Sequential application of WS and SVA induces synergetic effects on the BHJ morphology by selectively suppressing lamellar ordering while enhancing π-π ordering, yielding simultaneous improvement in all key device parameters. The universal applicability of this approach is further validated through successful implementation in binary D18:Y6, D18-Cl:N3-BO, and ternary D18-Cl:D18:Y6 systems. The findings demonstrate this DH strategy as an effective pathway for precise BHJ morphology engineering, offering a new route for fabricating highly efficient and stable BHJ organic solar cells.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01159"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501159","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photovoltaic performance of bulkheterojunction (BHJ)-based organic solar cells is critically governed by morphologies of donor:acceptor blends as light-harvesting layers. However, ideal morphological control remains challenging due to the systems' complexity. In this work, a sequential dual-heating (DH) strategy is presented to precisely tailor the BHJ morphology in a D18-Cl:Y6 system, achieving a remarkable 19.23% power conversion efficiency with enhanced device stability. The DH approach integrates a warm solution (WS) deposition and follow-on solvent-vapor annealing (SVA) by using carbon disulfide (CS2). The results show that the WS process enlarges π-π distance, enhances photoluminescence, reduces energy loss, and accelerates hole transfer, while the subsequent SVA process increases π-π displacement, thereby reducing both bimolecular and trap-assisted recombination, balancing carrier mobilities, and accelerating hole transport as well. Sequential application of WS and SVA induces synergetic effects on the BHJ morphology by selectively suppressing lamellar ordering while enhancing π-π ordering, yielding simultaneous improvement in all key device parameters. The universal applicability of this approach is further validated through successful implementation in binary D18:Y6, D18-Cl:N3-BO, and ternary D18-Cl:D18:Y6 systems. The findings demonstrate this DH strategy as an effective pathway for precise BHJ morphology engineering, offering a new route for fabricating highly efficient and stable BHJ organic solar cells.

通过双加热策略选择性调节体积异质结形态实现19%以上效率的聚合物太阳能电池。
基于体积异质结(BHJ)的有机太阳能电池的光伏性能在很大程度上取决于供体:受体共混物作为光收集层的形态。然而,由于系统的复杂性,理想的形态控制仍然具有挑战性。在这项工作中,提出了一种顺序双加热(DH)策略来精确地定制D18-Cl:Y6体系中的BHJ形态,在提高器件稳定性的同时实现了19.23%的功率转换效率。DH方法通过使用二硫化碳(CS2)集成了热溶液(WS)沉积和后续的溶剂蒸气退火(SVA)。结果表明,WS过程增大了π-π距离,增强了光致发光,减少了能量损失,加速了空穴转移,而随后的SVA过程增加了π-π位移,从而减少了双分子和陷阱辅助重组,平衡了载流子迁移率,加速了空穴转移。WS和SVA的顺序应用通过选择性地抑制片层有序而增强π-π有序,对BHJ的形貌产生协同效应,同时改善了所有关键器件参数。通过在二进制D18:Y6、D18- cl:N3-BO和三元D18- cl:D18:Y6系统中的成功实现,进一步验证了该方法的普遍适用性。研究结果表明,这种DH策略是实现BHJ精确形态工程的有效途径,为制造高效稳定的BHJ有机太阳能电池提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信