Knockoff procedure improves susceptibility gene identifications in conditional transcriptome-wide association studies.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-10-02 Epub Date: 2025-09-02 DOI:10.1016/j.ajhg.2025.08.007
Xiangyu Zhang, Lijun Wang, Jia Zhao, Hongyu Zhao
{"title":"Knockoff procedure improves susceptibility gene identifications in conditional transcriptome-wide association studies.","authors":"Xiangyu Zhang, Lijun Wang, Jia Zhao, Hongyu Zhao","doi":"10.1016/j.ajhg.2025.08.007","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptome-wide association studies (TWASs) have been developed to identify candidate genes associated with complex traits by integrating genome-wide association studies (GWASs) with expression quantitative trait loci (eQTL) data. However, most existing TWAS methods assess the marginal association between a single gene and a trait of interest, ignoring the influence of other genes in the same genomic region. Furthermore, false-positive gene-trait associations may arise due to correlations between eQTLs and nearby causal genetic variants. We introduce TWASKnockoff, a knockoff-based framework for detecting susceptibility genes using GWAS summary statistics and eQTL data. Unlike traditional TWAS approaches that rely on marginal testing, TWASKnockoff evaluates the conditional independence of each gene-trait pair, accounting for both cis-predicted expression correlations across genes and correlations between gene expression levels and genetic variants. TWASKnockoff estimates the correlation matrix of all genetic elements (including cis-predicted gene expression levels and genetic variant genotypes) by averaging estimations from parametric bootstrap samples, then applies knockoff-based inference to identify susceptibility genes while controlling the false discovery rate (FDR). Through simulations and an application to type 2 diabetes mellitus (T2D) data, we demonstrate that TWASKnockoff achieves superior FDR control and enhances power in detecting relevant gene-trait pairs at a fixed FDR level.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2476-2492"},"PeriodicalIF":8.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.08.007","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcriptome-wide association studies (TWASs) have been developed to identify candidate genes associated with complex traits by integrating genome-wide association studies (GWASs) with expression quantitative trait loci (eQTL) data. However, most existing TWAS methods assess the marginal association between a single gene and a trait of interest, ignoring the influence of other genes in the same genomic region. Furthermore, false-positive gene-trait associations may arise due to correlations between eQTLs and nearby causal genetic variants. We introduce TWASKnockoff, a knockoff-based framework for detecting susceptibility genes using GWAS summary statistics and eQTL data. Unlike traditional TWAS approaches that rely on marginal testing, TWASKnockoff evaluates the conditional independence of each gene-trait pair, accounting for both cis-predicted expression correlations across genes and correlations between gene expression levels and genetic variants. TWASKnockoff estimates the correlation matrix of all genetic elements (including cis-predicted gene expression levels and genetic variant genotypes) by averaging estimations from parametric bootstrap samples, then applies knockoff-based inference to identify susceptibility genes while controlling the false discovery rate (FDR). Through simulations and an application to type 2 diabetes mellitus (T2D) data, we demonstrate that TWASKnockoff achieves superior FDR control and enhances power in detecting relevant gene-trait pairs at a fixed FDR level.

仿制程序提高了条件转录组全关联研究中的易感基因鉴定。
转录组全关联研究(TWASs)通过整合全基因组关联研究(GWASs)和表达数量性状位点(eQTL)数据来鉴定与复杂性状相关的候选基因。然而,大多数现有的TWAS方法评估单个基因与感兴趣的性状之间的边际关联,忽略了同一基因组区域中其他基因的影响。此外,由于eqtl与附近的因果遗传变异之间的相关性,可能会出现假阳性的基因-性状关联。我们介绍了TWASKnockoff,这是一个基于仿制品的框架,用于使用GWAS汇总统计和eQTL数据检测易感基因。与依赖边缘检测的传统TWAS方法不同,TWASKnockoff评估每个基因性状对的条件独立性,考虑基因间的顺式预测表达相关性以及基因表达水平与遗传变异之间的相关性。TWASKnockoff通过对参数bootstrap样本的平均估计来估计所有遗传元素(包括顺式预测基因表达水平和遗传变异基因型)的相关矩阵,然后应用基于仿制品的推理来识别易感基因,同时控制错误发现率(FDR)。通过对2型糖尿病(T2D)数据的模拟和应用,我们证明TWASKnockoff具有优越的FDR控制能力,并提高了在固定FDR水平下检测相关基因-性状对的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信