Atomistic Modeling of Rare Earth Ions in Photonic Materials

IF 3 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Luminescence Pub Date : 2025-09-05 DOI:10.1002/bio.70297
Dennis Delali Kwesi Wayo, Mohd Zulkifli Bin Mohamad Noor, Masoud Darvish Ganji, Leonardo Goliatt
{"title":"Atomistic Modeling of Rare Earth Ions in Photonic Materials","authors":"Dennis Delali Kwesi Wayo,&nbsp;Mohd Zulkifli Bin Mohamad Noor,&nbsp;Masoud Darvish Ganji,&nbsp;Leonardo Goliatt","doi":"10.1002/bio.70297","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Rare-earth ions (REIs), especially trivalent lanthanides (Ln<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>), are central to photonic technologies due to sharp intra-4f transitions, long lifetimes, and host-insensitive emission. However, modeling REIs remains challenging due to localized 4f orbitals, strong electron correlation, and multiplet structures. This review summarizes atomistic modeling strategies combining quantum chemistry and machine learning (ML). Traditional methods, DFT+<span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n </mrow>\n <annotation>$$ U $$</annotation>\n </semantics></math>, hybrid functionals (HSE06), <span></span><math>\n <semantics>\n <mrow>\n <mi>GW</mi>\n </mrow>\n <annotation>$$ GW $$</annotation>\n </semantics></math>, and DMFT, are benchmarked; for example, hybrid DFT reproduces 4f–5d gaps in Ce<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>:YAG within 0.1–0.2 eV. Wavefunction methods like CASSCF and CASPT2 capture Stark splittings and transition strengths in Eu<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>:Y<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math> SiO<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>5</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_5 $$</annotation>\n </semantics></math>. ML models trained on DFT data predict bandgaps with <span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n </mrow>\n <annotation>$$ &lt; $$</annotation>\n </semantics></math> 0.2 eV error and aid inverse design of Ce-doped phosphors with 505 nm emission and 60% retention at 640 K. Unlike prior reviews, this work bridges high-level quantum modeling with ML-driven screening across key applications: upconversion (Yb<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>–Er<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>:NaYF<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_4 $$</annotation>\n </semantics></math>), lasers (Nd<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>:YAG), quantum memories (Pr<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>:Y<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math> SiO<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>5</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_5 $$</annotation>\n </semantics></math>), and sensors (SrAl<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math> O<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>4</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_4 $$</annotation>\n </semantics></math>:Eu<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{2+} $$</annotation>\n </semantics></math>, Dy<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{3+} $$</annotation>\n </semantics></math>). Covering over 20 REI–host systems, it integrates insights from DFT, Monte Carlo, MD, and ML potentials. The review thus provides both a methodological guide and a resource for designing next-generation REI-based photonic materials.</p>\n </div>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bio.70297","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rare-earth ions (REIs), especially trivalent lanthanides (Ln 3 + $$ {}^{3+} $$ ), are central to photonic technologies due to sharp intra-4f transitions, long lifetimes, and host-insensitive emission. However, modeling REIs remains challenging due to localized 4f orbitals, strong electron correlation, and multiplet structures. This review summarizes atomistic modeling strategies combining quantum chemistry and machine learning (ML). Traditional methods, DFT+ U $$ U $$ , hybrid functionals (HSE06), GW $$ GW $$ , and DMFT, are benchmarked; for example, hybrid DFT reproduces 4f–5d gaps in Ce 3 + $$ {}^{3+} $$ :YAG within 0.1–0.2 eV. Wavefunction methods like CASSCF and CASPT2 capture Stark splittings and transition strengths in Eu 3 + $$ {}^{3+} $$ :Y 2 $$ {}_2 $$ SiO 5 $$ {}_5 $$ . ML models trained on DFT data predict bandgaps with < $$ < $$  0.2 eV error and aid inverse design of Ce-doped phosphors with 505 nm emission and 60% retention at 640 K. Unlike prior reviews, this work bridges high-level quantum modeling with ML-driven screening across key applications: upconversion (Yb 3 + $$ {}^{3+} $$ –Er 3 + $$ {}^{3+} $$ :NaYF 4 $$ {}_4 $$ ), lasers (Nd 3 + $$ {}^{3+} $$ :YAG), quantum memories (Pr 3 + $$ {}^{3+} $$ :Y 2 $$ {}_2 $$ SiO 5 $$ {}_5 $$ ), and sensors (SrAl 2 $$ {}_2 $$ O 4 $$ {}_4 $$ :Eu 2 + $$ {}^{2+} $$ , Dy 3 + $$ {}^{3+} $$ ). Covering over 20 REI–host systems, it integrates insights from DFT, Monte Carlo, MD, and ML potentials. The review thus provides both a methodological guide and a resource for designing next-generation REI-based photonic materials.

Abstract Image

Abstract Image

Abstract Image

光子材料中稀土离子的原子模拟
稀土离子(REIs),特别是三价镧系元素(ln3 + $$ {}^{3+} $$),由于其在4f内的急剧跃迁、长寿命和对宿主不敏感的发射,是光子技术的核心。然而,由于局域化的4f轨道、强电子相关性和多重结构,REIs的建模仍然具有挑战性。本文综述了结合量子化学和机器学习的原子建模策略。对传统方法DFT+ U $$ U $$、混合泛函(HSE06)、GW $$ GW $$和DMFT进行了基准测试;例如,混合DFT在0.1-0.2 eV内再现了Ce 3 + $$ {}^{3+} $$:YAG中4f-5d的间隙。像CASSCF和CASPT2这样的波函数方法捕获了Eu 3 +中的Stark分裂和转换强度$$ {}^{3+} $$: y2 $$ {}_2 $$sio5 $$ {}_5 $$。基于DFT数据训练的ML模型预测带隙误差为&lt; $$ < $$ 0.2 eV,并有助于505 nm和60 nm发射的ce掺杂荧光粉的逆设计% retention at 640 K. Unlike prior reviews, this work bridges high-level quantum modeling with ML-driven screening across key applications: upconversion (Yb 3 + $$ {}^{3+} $$ –Er 3 + $$ {}^{3+} $$ :NaYF 4 $$ {}_4 $$ ), lasers (Nd 3 + $$ {}^{3+} $$ :YAG), quantum memories (Pr 3 + $$ {}^{3+} $$ :Y 2 $$ {}_2 $$ SiO 5 $$ {}_5 $$ ), and sensors (SrAl 2 $$ {}_2 $$ O 4 $$ {}_4 $$ :Eu 2 + $$ {}^{2+} $$ , Dy 3 + $$ {}^{3+} $$ ). Covering over 20 REI–host systems, it integrates insights from DFT, Monte Carlo, MD, and ML potentials. The review thus provides both a methodological guide and a resource for designing next-generation REI-based photonic materials.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Luminescence
Luminescence 生物-生化与分子生物学
CiteScore
5.10
自引率
13.80%
发文量
248
审稿时长
3.5 months
期刊介绍: Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry. Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信