A compact circular slotted radiator for ISM and wireless bands

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
Abhilash S. Vasu, N. R. Lakshmi, T. K. Sreeja
{"title":"A compact circular slotted radiator for ISM and wireless bands","authors":"Abhilash S. Vasu,&nbsp;N. R. Lakshmi,&nbsp;T. K. Sreeja","doi":"10.1007/s11182-025-03494-0","DOIUrl":null,"url":null,"abstract":"<div><p>A compact coplanar waveguide radiator is formed by two ground plane and a slotted central signal strip. The radiating patch is printed on FR4 substrate 1 mm thick. The circular slot on the central strip improves the bandwidth and decreases the return loss. The measured results show that it covers 4.25–7.95 GHz bandwidth with −24.80 dB return loss at a resonance frequency of 6.00 GHz. The fabricated radiator produces nominal value of co-pol at the resonance frequency. The <i>Z</i>-parameter of the proposed radiator is correlated with 50 Ω matching condition. The magnitude of voltage standing wave ratio at 6.00 GHz tends to unity, which implies that the reflected signal is zero and leads to a perfect matching radiator. The measured average gain and radiation efficiency are 2.44 dBi and 94.50%, respectively. The fabricated radiator covers 5.20/5.80 GHz wireless local area network (WLAN), 5.50 GHz worldwide interoperability for microwave access (WiMAX), 5.80 GHz industrial, scientific, and medical (ISM) band, 5G sub 6 GHz band, and 5 GHz wireless fidelity (WiFi) bands.</p></div>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"68 5","pages":"784 - 790"},"PeriodicalIF":0.4000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-025-03494-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A compact coplanar waveguide radiator is formed by two ground plane and a slotted central signal strip. The radiating patch is printed on FR4 substrate 1 mm thick. The circular slot on the central strip improves the bandwidth and decreases the return loss. The measured results show that it covers 4.25–7.95 GHz bandwidth with −24.80 dB return loss at a resonance frequency of 6.00 GHz. The fabricated radiator produces nominal value of co-pol at the resonance frequency. The Z-parameter of the proposed radiator is correlated with 50 Ω matching condition. The magnitude of voltage standing wave ratio at 6.00 GHz tends to unity, which implies that the reflected signal is zero and leads to a perfect matching radiator. The measured average gain and radiation efficiency are 2.44 dBi and 94.50%, respectively. The fabricated radiator covers 5.20/5.80 GHz wireless local area network (WLAN), 5.50 GHz worldwide interoperability for microwave access (WiMAX), 5.80 GHz industrial, scientific, and medical (ISM) band, 5G sub 6 GHz band, and 5 GHz wireless fidelity (WiFi) bands.

一个紧凑的圆形开槽散热器,用于ISM和无线频段
一个紧凑的共面波导辐射体由两个接地面和一个开槽的中央信号带组成。辐射贴片印刷在1 mm厚的FR4衬底上。中心带上的圆形槽提高了带宽,降低了回波损耗。测量结果表明,在6.00 GHz的谐振频率下,其带宽为4.25-7.95 GHz,回波损耗为- 24.80 dB。所制备的散热器在谐振频率处产生标称共pol值。该散热器的z参数与50 Ω匹配条件相关。在6.00 GHz处,电压驻波比的幅值趋于一致,这意味着反射信号为零,从而导致了一个完美匹配的辐射体。测得的平均增益和辐射效率分别为2.44 dBi和94.50%。制作的散热器涵盖5.20/5.80 GHz无线局域网(WLAN), 5.50 GHz全球微波接入互操作性(WiMAX), 5.80 GHz工业,科学和医疗(ISM)频段,5G sub 6 GHz频段和5 GHz无线保真(WiFi)频段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信