{"title":"Learning Robust Adaptive Bitrate Algorithms with Adversarial Inverse Reinforcement Learning","authors":"Ling Yi;Yongbin Qin","doi":"10.23919/cje.2024.00.202","DOIUrl":null,"url":null,"abstract":"Adaptive bitrate (ABR) algorithms are crucial for video streaming services by dynamically adjusting video bitrate based on current network conditions to ensure better quality of experience (QoE). However, traditional ABR algorithms often face challenges in adapting to diverse network environments and fail to fully utilize expert knowledge. In this study, we propose a novel approach using adversarial inverse reinforcement learning (AIRL) to learn ABR algorithms. Unlike traditional methods, AIRL can effectively leverage expert demonstrations to learn robust reward functions and generate stable ABR policies. Simultaneously, the learned ABR policy adjusts based on the updated reward function, aiming to closely emulate the video bitrate decision-making behavior of experts. Moreover, by decoupling the reward function, we can develop a more robust ABR strategy that can effectively adapt video bitrates to significant fluctuations in network conditions, while also optimizing different video QoE objectives. We conducted experiments across various network conditions, demonstrating that the proposed method exhibits stable and superior performance.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 4","pages":"1309-1320"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11151225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11151225/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive bitrate (ABR) algorithms are crucial for video streaming services by dynamically adjusting video bitrate based on current network conditions to ensure better quality of experience (QoE). However, traditional ABR algorithms often face challenges in adapting to diverse network environments and fail to fully utilize expert knowledge. In this study, we propose a novel approach using adversarial inverse reinforcement learning (AIRL) to learn ABR algorithms. Unlike traditional methods, AIRL can effectively leverage expert demonstrations to learn robust reward functions and generate stable ABR policies. Simultaneously, the learned ABR policy adjusts based on the updated reward function, aiming to closely emulate the video bitrate decision-making behavior of experts. Moreover, by decoupling the reward function, we can develop a more robust ABR strategy that can effectively adapt video bitrates to significant fluctuations in network conditions, while also optimizing different video QoE objectives. We conducted experiments across various network conditions, demonstrating that the proposed method exhibits stable and superior performance.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.