Yicheng Deng , Shuya Shi , Keying Ma , Yuanyuan Shao , Jesse Zhu
{"title":"Hydrodynamic characteristics of the bubble-induced three-phase inverse fluidized bed in NaCl aqueous solution system","authors":"Yicheng Deng , Shuya Shi , Keying Ma , Yuanyuan Shao , Jesse Zhu","doi":"10.1016/j.partic.2025.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble-induced three-phase inverse fluidized bed (BIFB) has attracted significant attention in biological wastewater treatment due to its low energy consumption and high mass transfer efficiency. To extend the application in high-salinity wastewater treatment, a square BIFB was constructed to investigate the flow characteristics in different NaCl concentration systems, including flow regimes, fluidization transition gas velocities, bed expansion ratio, and average phase holdups. The flow regime changes in NaCl solution system are generally consistent with those in the pure water system. The fluidization transition gas velocities initially decrease and then increase as the NaCl concentration increases, with a minimum value observed at approximately 1 wt% NaCl solution. The average gas holdup in the NaCl solution system is significantly higher than in the pure water system and increases with the NaCl concentration. These results could provide basic data and theoretical support for reactor design and its industrial application in high-salinity wastewater treatment.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"106 ","pages":"Pages 20-28"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125002251","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bubble-induced three-phase inverse fluidized bed (BIFB) has attracted significant attention in biological wastewater treatment due to its low energy consumption and high mass transfer efficiency. To extend the application in high-salinity wastewater treatment, a square BIFB was constructed to investigate the flow characteristics in different NaCl concentration systems, including flow regimes, fluidization transition gas velocities, bed expansion ratio, and average phase holdups. The flow regime changes in NaCl solution system are generally consistent with those in the pure water system. The fluidization transition gas velocities initially decrease and then increase as the NaCl concentration increases, with a minimum value observed at approximately 1 wt% NaCl solution. The average gas holdup in the NaCl solution system is significantly higher than in the pure water system and increases with the NaCl concentration. These results could provide basic data and theoretical support for reactor design and its industrial application in high-salinity wastewater treatment.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.