Hydrodynamic characteristics of the bubble-induced three-phase inverse fluidized bed in NaCl aqueous solution system

IF 4.3 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Yicheng Deng , Shuya Shi , Keying Ma , Yuanyuan Shao , Jesse Zhu
{"title":"Hydrodynamic characteristics of the bubble-induced three-phase inverse fluidized bed in NaCl aqueous solution system","authors":"Yicheng Deng ,&nbsp;Shuya Shi ,&nbsp;Keying Ma ,&nbsp;Yuanyuan Shao ,&nbsp;Jesse Zhu","doi":"10.1016/j.partic.2025.08.015","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble-induced three-phase inverse fluidized bed (BIFB) has attracted significant attention in biological wastewater treatment due to its low energy consumption and high mass transfer efficiency. To extend the application in high-salinity wastewater treatment, a square BIFB was constructed to investigate the flow characteristics in different NaCl concentration systems, including flow regimes, fluidization transition gas velocities, bed expansion ratio, and average phase holdups. The flow regime changes in NaCl solution system are generally consistent with those in the pure water system. The fluidization transition gas velocities initially decrease and then increase as the NaCl concentration increases, with a minimum value observed at approximately 1 wt% NaCl solution. The average gas holdup in the NaCl solution system is significantly higher than in the pure water system and increases with the NaCl concentration. These results could provide basic data and theoretical support for reactor design and its industrial application in high-salinity wastewater treatment.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"106 ","pages":"Pages 20-28"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125002251","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bubble-induced three-phase inverse fluidized bed (BIFB) has attracted significant attention in biological wastewater treatment due to its low energy consumption and high mass transfer efficiency. To extend the application in high-salinity wastewater treatment, a square BIFB was constructed to investigate the flow characteristics in different NaCl concentration systems, including flow regimes, fluidization transition gas velocities, bed expansion ratio, and average phase holdups. The flow regime changes in NaCl solution system are generally consistent with those in the pure water system. The fluidization transition gas velocities initially decrease and then increase as the NaCl concentration increases, with a minimum value observed at approximately 1 wt% NaCl solution. The average gas holdup in the NaCl solution system is significantly higher than in the pure water system and increases with the NaCl concentration. These results could provide basic data and theoretical support for reactor design and its industrial application in high-salinity wastewater treatment.

Abstract Image

NaCl水溶液体系中气泡诱导三相反流化床的水动力特性
气泡诱导三相反流化床(BIFB)以其低能耗和高传质效率在生物废水处理中备受关注。为了扩大其在高盐度废水处理中的应用,构建了方形bib,研究了不同NaCl浓度体系下的流动特性,包括流态化过渡气速、床层膨胀比和平均相含率。NaCl溶液体系的流态变化与纯水体系的流态变化基本一致。随着NaCl浓度的增加,流化过渡气速度先减小后增大,在NaCl浓度约为1wt %时达到最小值。NaCl溶液体系的平均气含率显著高于纯水体系,且随NaCl浓度的增加而增加。研究结果可为高含盐废水处理反应器设计及工业应用提供基础数据和理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信