The asymptotic of the Mullins-Sekerka and the area-preserving curvature flow in the planar flat torus

IF 2.3 2区 数学 Q1 MATHEMATICS
Vedansh Arya , Daniele De Gennaro , Anna Kubin
{"title":"The asymptotic of the Mullins-Sekerka and the area-preserving curvature flow in the planar flat torus","authors":"Vedansh Arya ,&nbsp;Daniele De Gennaro ,&nbsp;Anna Kubin","doi":"10.1016/j.jde.2025.113755","DOIUrl":null,"url":null,"abstract":"<div><div>We study the asymptotic behavior of flat flow solutions to the periodic and planar two-phase Mullins-Sekerka flow and area-preserving curvature flow. We show that flat flows converge to either a finite union of equally sized disjoint disks or to a finite union of disjoint strips or to the complement of these configurations exponentially fast. A key ingredient in our approach is the derivation of a sharp quantitative Alexandrov inequality for periodic smooth sets.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"451 ","pages":"Article 113755"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962500782X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behavior of flat flow solutions to the periodic and planar two-phase Mullins-Sekerka flow and area-preserving curvature flow. We show that flat flows converge to either a finite union of equally sized disjoint disks or to a finite union of disjoint strips or to the complement of these configurations exponentially fast. A key ingredient in our approach is the derivation of a sharp quantitative Alexandrov inequality for periodic smooth sets.
平面平面环面Mullins-Sekerka流和保面积曲率流的渐近性
研究了周期平面两相Mullins-Sekerka流和曲率保面积流的平面流解的渐近性质。我们证明了平面流收敛于大小相等的不相交圆盘的有限并集或不相交条的有限并集,或以指数速度收敛于这些构型的补集。我们方法的一个关键成分是周期光滑集的尖锐定量Alexandrov不等式的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信