A new kind of fractional implicit sweeping processes with history-dependent operators: Well-posedness and applications

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Shengda Zeng , Jinsheng Du , Sergey A. Timoshin , Emilio Vilches
{"title":"A new kind of fractional implicit sweeping processes with history-dependent operators: Well-posedness and applications","authors":"Shengda Zeng ,&nbsp;Jinsheng Du ,&nbsp;Sergey A. Timoshin ,&nbsp;Emilio Vilches","doi":"10.1016/j.nahs.2025.101631","DOIUrl":null,"url":null,"abstract":"<div><div>We study the well-posedness (existence and uniqueness of a solution) to state-dependent and state-independent Caputo–Katugampola fractional implicit sweeping processes with history-dependent operators in a real Hilbert space. First, using convex analysis tools we reduce these two types of sweeping processes to equivalent differential equations. Second, we employ the Banach fixed-point theorem and fixed-point argument for condensing mappings to examine the well-posedness of the latter equations. Third, we apply our results to circuit models that incorporate memristors and fractional capacitors, and conduct some numerical simulations for these models. We note that the results in this article extend the research of Adly and Haddad (2018), Migórski et al. (2019) and Jourani and Vilches (2019).</div></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"59 ","pages":"Article 101631"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X25000573","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the well-posedness (existence and uniqueness of a solution) to state-dependent and state-independent Caputo–Katugampola fractional implicit sweeping processes with history-dependent operators in a real Hilbert space. First, using convex analysis tools we reduce these two types of sweeping processes to equivalent differential equations. Second, we employ the Banach fixed-point theorem and fixed-point argument for condensing mappings to examine the well-posedness of the latter equations. Third, we apply our results to circuit models that incorporate memristors and fractional capacitors, and conduct some numerical simulations for these models. We note that the results in this article extend the research of Adly and Haddad (2018), Migórski et al. (2019) and Jourani and Vilches (2019).
一类新的具有历史依赖算子的分数隐式扫描过程:适定性及其应用
研究了实数Hilbert空间中具有历史依赖算子的状态依赖和状态独立的Caputo-Katugampola分数隐式扫描过程的适定性(解的存在性和唯一性)。首先,使用凸分析工具,我们将这两种类型的扫描过程简化为等效的微分方程。其次,我们利用Banach不动点定理和压缩映射的不动点论证来检验后一类方程的适定性。第三,我们将我们的结果应用于包含忆阻器和分数电容的电路模型,并对这些模型进行了一些数值模拟。我们注意到,本文的结果扩展了Adly和Haddad (2018), Migórski等人(2019)和Jourani和Vilches(2019)的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信