Diamond related materials for energy storage and conversion applications

IF 5.7 3区 材料科学 Q2 Materials Science
Si-yu YU , Xi-yan WANG , Nian-jun YANG
{"title":"Diamond related materials for energy storage and conversion applications","authors":"Si-yu YU ,&nbsp;Xi-yan WANG ,&nbsp;Nian-jun YANG","doi":"10.1016/S1872-5805(25)61021-3","DOIUrl":null,"url":null,"abstract":"<div><div>Diamond combines many unique properties, including high stability, strong optical dispersion, excellent mechanical strength, and outstanding thermal conductivity. Its structure, surface groups, and electrical conductivity are also tunable, increasing its functional versatility. These make diamond and its related materials, such as its composites, highly promising for various applications in energy fields. This review summarizes recent advances and key achievements in energy storage and conversion, covering electrochemical energy storage (e.g., batteries and supercapacitors), electrocatalytic energy conversion (e.g., CO<sub>2</sub> and nitrogen reduction reactions), and solar energy conversion (e.g., photo-(electro)chemical CO<sub>2</sub> and nitrogen reduction reactions, and solar cells). Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (110KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 973-991"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525610213","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Diamond combines many unique properties, including high stability, strong optical dispersion, excellent mechanical strength, and outstanding thermal conductivity. Its structure, surface groups, and electrical conductivity are also tunable, increasing its functional versatility. These make diamond and its related materials, such as its composites, highly promising for various applications in energy fields. This review summarizes recent advances and key achievements in energy storage and conversion, covering electrochemical energy storage (e.g., batteries and supercapacitors), electrocatalytic energy conversion (e.g., CO2 and nitrogen reduction reactions), and solar energy conversion (e.g., photo-(electro)chemical CO2 and nitrogen reduction reactions, and solar cells). Current challenges and prospects related to the synthesis of diamond materials and the technologies for their energy applications are outlined and discussed.
  1. Download: Download high-res image (110KB)
  2. Download: Download full-size image
金刚石相关材料在能量储存和转换方面的应用
金刚石具有许多独特的性能,包括高稳定性、强光色散、优异的机械强度和出色的导热性。它的结构、表面基团和电导率也是可调的,增加了它的功能多功能性。这使得金刚石及其相关材料,如复合材料,在能源领域的各种应用前景非常广阔。本文综述了能量存储和转换的最新进展和主要成果,包括电化学能量存储(如电池和超级电容器)、电催化能量转换(如CO2和氮还原反应)和太阳能转换(如光(电)化学CO2和氮还原反应和太阳能电池)。概述和讨论了目前金刚石材料合成及其能源应用技术面临的挑战和前景。下载:下载高分辨率图片(110KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信