Superstructured carbon materials: Progress and challenges in energy storage and conversion technologies

IF 5.7 3区 材料科学 Q2 Materials Science
Ming-xue ZUO , Xia HU , De-bin KONG , Xin-ru WEI , Xin QIN , Wei LV , Quan-Hong YANG , Fei-yu KANG , Lin-jie ZHI
{"title":"Superstructured carbon materials: Progress and challenges in energy storage and conversion technologies","authors":"Ming-xue ZUO ,&nbsp;Xia HU ,&nbsp;De-bin KONG ,&nbsp;Xin-ru WEI ,&nbsp;Xin QIN ,&nbsp;Wei LV ,&nbsp;Quan-Hong YANG ,&nbsp;Fei-yu KANG ,&nbsp;Lin-jie ZHI","doi":"10.1016/S1872-5805(25)61011-0","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance. However, traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects. With an aim of realizing devisable structures, adjustable functions, and performance breakthroughs, superstructured carbons is proposed and represent a category of carbon-based materials, characterized by precisely-built pores, networks, and interfaces. Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices. We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure, a dense carbon network framework, and a multi-component highly coupled interface between the different components. Finally, we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (169KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 962-971"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525610110","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon materials are a key component in energy storage and conversion devices and their microstructure plays a crucial role in determining device performance. However, traditional carbon materials are unable to meet the requirements for applications in emerging fields such as renewable energy and electric vehicles due to limitations including a disordered structure and uncontrolled defects. With an aim of realizing devisable structures, adjustable functions, and performance breakthroughs, superstructured carbons is proposed and represent a category of carbon-based materials, characterized by precisely-built pores, networks, and interfaces. Superstructured carbons can overcome the limitations of traditional carbon materials and improve the performance of energy storage and conversion devices. We review the structure-activity relationships of superstructured carbons and recent research advances from three aspects including a precisely customized pore structure, a dense carbon network framework, and a multi-component highly coupled interface between the different components. Finally, we provide an outlook on the future development of and practical challenges in energy storage and conversion devices.
  1. Download: Download high-res image (169KB)
  2. Download: Download full-size image
超结构碳材料:能量储存和转换技术的进展与挑战
碳材料是储能转换器件的关键部件,其微观结构对储能转换器件的性能起着至关重要的作用。然而,传统的碳材料由于结构无序、缺陷不可控等限制,无法满足可再生能源、电动汽车等新兴领域的应用要求。为了实现可设计的结构、可调节的功能和性能突破,超结构碳被提出并代表了一类碳基材料,其特征是精确构建的孔隙、网络和界面。超结构碳可以克服传统碳材料的局限性,提高能量存储和转换装置的性能。本文从精确定制的孔隙结构、致密的碳网络框架和多组分之间的高耦合界面三个方面综述了超结构碳的构-活性关系及近年来的研究进展。最后,展望了储能与转换装置的未来发展和实际挑战。下载:下载高清图片(169KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信