Zhi ZHENG , Dong-yang CAI , Hua-xin LIU , Han-rui DING , Ying-hao ZHANG , Jia-bei XIAO , Wen-tao DENG , Guo-qiang ZOU , Hong-shuai HOU , Xiao-bo JI
{"title":"Carbon dots for use in advanced battery systems","authors":"Zhi ZHENG , Dong-yang CAI , Hua-xin LIU , Han-rui DING , Ying-hao ZHANG , Jia-bei XIAO , Wen-tao DENG , Guo-qiang ZOU , Hong-shuai HOU , Xiao-bo JI","doi":"10.1016/S1872-5805(25)61014-6","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dots (CDs) are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries, owing to their ultrasmall size, tunable surface functional groups and excellent dispersibility. This review summarizes recent advances in CD-based materials for advanced batteries. Methods for the preparation of CDs are first introduced, focusing on the feasibility of large-scale synthesis, and four critical uses of CDs are analyzed: electrolyte solutions, metal electrode coatings, electrode materials, and solid-state batteries. We then consider how CDs suppress dendrite formation, decrease volume expansion, accelerate charge transfer, and improve ion migration. Finally, existing problems are discussed, including the industrial production of CDs, their role as additives in the evolution of electrode interfaces, and strategies for giving them multifunctionality.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (166KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 931-960"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525610146","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dots (CDs) are functionalized carbon-based nanomaterials that have the potential for use in advanced batteries, owing to their ultrasmall size, tunable surface functional groups and excellent dispersibility. This review summarizes recent advances in CD-based materials for advanced batteries. Methods for the preparation of CDs are first introduced, focusing on the feasibility of large-scale synthesis, and four critical uses of CDs are analyzed: electrolyte solutions, metal electrode coatings, electrode materials, and solid-state batteries. We then consider how CDs suppress dendrite formation, decrease volume expansion, accelerate charge transfer, and improve ion migration. Finally, existing problems are discussed, including the industrial production of CDs, their role as additives in the evolution of electrode interfaces, and strategies for giving them multifunctionality.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.