Advances in the use of carbon materials for lithium-air batteries

IF 5.7 3区 材料科学 Q2 Materials Science
Yu LEI , Yu ZHONG , Yi-shuo LI , Tao LI , Zhuo-hui ZHOU , Lei QIN
{"title":"Advances in the use of carbon materials for lithium-air batteries","authors":"Yu LEI ,&nbsp;Yu ZHONG ,&nbsp;Yi-shuo LI ,&nbsp;Tao LI ,&nbsp;Zhuo-hui ZHOU ,&nbsp;Lei QIN","doi":"10.1016/S1872-5805(25)61013-4","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-air batteries (LABs) are regarded as a next-generation energy storage option due to their relatively high energy density. The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode, which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems. Carbon materials are considered key to solving these problems due to their conductivity, functional flexibility, and adjustable pore structure. This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs, focusing on their structural characteristics, electrochemical behavior, and reaction mechanisms. Besides being used as air cathodes, carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (151KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 909-930"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525610134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-air batteries (LABs) are regarded as a next-generation energy storage option due to their relatively high energy density. The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode, which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems. Carbon materials are considered key to solving these problems due to their conductivity, functional flexibility, and adjustable pore structure. This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs, focusing on their structural characteristics, electrochemical behavior, and reaction mechanisms. Besides being used as air cathodes, carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs.
  1. Download: Download high-res image (151KB)
  2. Download: Download full-size image
碳材料在锂空气电池中的应用进展
锂空气电池(LABs)因其相对较高的能量密度而被视为下一代储能选择。锂基氧化物在空气阴极的形成和分解,不仅导致阴极催化效率低,而且限制了电化学可逆性,引起副反应问题,影响了实验室的循环稳定性和寿命。碳材料由于其导电性、功能柔韧性和可调节的孔隙结构而被认为是解决这些问题的关键。本文综述了碳材料作为实验室空气阴极催化材料的研究进展,重点介绍了碳材料的结构特征、电化学行为和反应机理。除了用作空气阴极外,碳材料还显示出用作金属阳极保护层或实验室阳极材料的潜力。下载:下载高分辨率图片(151KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信