Selective leaching and solvent extraction of Lithium from spent batteries

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Emmanuel Ayorinde Ajiboye , Trevor Dzwiniel
{"title":"Selective leaching and solvent extraction of Lithium from spent batteries","authors":"Emmanuel Ayorinde Ajiboye ,&nbsp;Trevor Dzwiniel","doi":"10.1016/j.hydromet.2025.106566","DOIUrl":null,"url":null,"abstract":"<div><div>Pre-extracting Li from spent lithium-ion batteries (LIBs) is crucial because the recovery efficiency of Li is low after other critical metals have been extracted. Traditional methods involving black mass roasting followed by water leaching have resulted in the extraction of 76 % Li and 61 % Al. However, pre-leaching Li from pretreated black mass using an oxalic acid solution at both ambient and elevated temperatures significantly improved results, achieving 98.1 % Li, 99.5 % Al, and 100 % Fe extraction while leaving Ni, Co, Mn, and Cu behind under optimal conditions. Oxalic acid crystals were recovered by refrigerating the leach solution at temperatures below 5 °C and were reused with nearly identical leaching efficiency. Selective extraction of Li from the oxalate leach solution was achieved using Cyanex® 936P under optimal conditions. Due to its extremely low Li extraction efficiency, Dichloromethane proved unsuitable as a diluent. Comparative extraction tests using Cyanex® 936P, Cyanex® 272, and DEHPA in kerosene demonstrated that Cyanex® 936P is an excellent extractant for Li, effectively separating it from other impurities. Under optimal conditions, 98.8 % of available Li was extracted using 20 % Cyanex® 936P, compared to 51.1 % with Cyanex® 272 and 39.9 % with DEHPA in kerosene. Additionally, stripping Li from Cyanex® 936P using H<sub>2</sub>SO<sub>4</sub> and HCl was explored, with HCl yielding the best performance.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"238 ","pages":"Article 106566"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001318","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Pre-extracting Li from spent lithium-ion batteries (LIBs) is crucial because the recovery efficiency of Li is low after other critical metals have been extracted. Traditional methods involving black mass roasting followed by water leaching have resulted in the extraction of 76 % Li and 61 % Al. However, pre-leaching Li from pretreated black mass using an oxalic acid solution at both ambient and elevated temperatures significantly improved results, achieving 98.1 % Li, 99.5 % Al, and 100 % Fe extraction while leaving Ni, Co, Mn, and Cu behind under optimal conditions. Oxalic acid crystals were recovered by refrigerating the leach solution at temperatures below 5 °C and were reused with nearly identical leaching efficiency. Selective extraction of Li from the oxalate leach solution was achieved using Cyanex® 936P under optimal conditions. Due to its extremely low Li extraction efficiency, Dichloromethane proved unsuitable as a diluent. Comparative extraction tests using Cyanex® 936P, Cyanex® 272, and DEHPA in kerosene demonstrated that Cyanex® 936P is an excellent extractant for Li, effectively separating it from other impurities. Under optimal conditions, 98.8 % of available Li was extracted using 20 % Cyanex® 936P, compared to 51.1 % with Cyanex® 272 and 39.9 % with DEHPA in kerosene. Additionally, stripping Li from Cyanex® 936P using H2SO4 and HCl was explored, with HCl yielding the best performance.
废电池中锂的选择性浸出和溶剂萃取
从废锂离子电池(LIBs)中预提取锂至关重要,因为在提取其他关键金属后,锂的回收率很低。传统的方法包括黑色物质焙烧和水浸,可以提取76%的锂和61%的铝。然而,使用草酸溶液在室温和高温下从预处理的黑色物质中预浸出锂,可以显著提高结果,获得98.1%的锂,99.5%的铝和100%的铁,同时在最佳条件下留下Ni, Co, Mn和Cu。草酸晶体通过在低于5℃的温度下冷藏浸出液回收,并以几乎相同的浸出效率重复使用。在最佳条件下,使用Cyanex®936P从草酸浸出液中选择性提取Li。由于二氯甲烷的Li萃取效率极低,不适合作为稀释剂。在煤油中使用Cyanex®936P、Cyanex®272和DEHPA进行对比萃取试验,结果表明,Cyanex®936P是一种极好的锂萃取剂,可有效地将其与其他杂质分离。在最佳条件下,使用20%的Cyanex®936P提取98.8%的有效锂,而在煤油中使用Cyanex®272提取51.1%,使用DEHPA提取39.9%。此外,还研究了使用H2SO4和HCl从Cyanex®936P中提取锂的方法,其中HCl的效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信