Second-order superintegrable systems and Weylian geometry

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Andreas Vollmer
{"title":"Second-order superintegrable systems and Weylian geometry","authors":"Andreas Vollmer","doi":"10.1016/j.nuclphysb.2025.117095","DOIUrl":null,"url":null,"abstract":"<div><div>Abundant second-order maximally conformally superintegrable Hamiltonian systems are re-examined, revealing their underlying natural Weyl structure and offering a clearer geometric context for the study of Stäckel transformations (also known as coupling constant metamorphosis). This also allows us to naturally extend the concept of conformal superintegrability from the realm of conformal geometries to that of Weyl structures. It enables us to interpret superintegrable systems of the above type as semi-Weyl structures, a concept related to statistical manifolds and affine hypersurface theory.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1019 ","pages":"Article 117095"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325003049","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

Abundant second-order maximally conformally superintegrable Hamiltonian systems are re-examined, revealing their underlying natural Weyl structure and offering a clearer geometric context for the study of Stäckel transformations (also known as coupling constant metamorphosis). This also allows us to naturally extend the concept of conformal superintegrability from the realm of conformal geometries to that of Weyl structures. It enables us to interpret superintegrable systems of the above type as semi-Weyl structures, a concept related to statistical manifolds and affine hypersurface theory.
二阶超可积系统与魏氏几何
丰富的二阶最大共形超积哈密顿系统被重新检查,揭示其潜在的自然Weyl结构,并提供了一个更清晰的几何背景Stäckel变换的研究(也被称为耦合常数变态)。这也允许我们自然地将共形超可积性的概念从共形几何领域扩展到Weyl结构领域。它使我们能够将上述类型的超可积系统解释为半weyl结构,这是一个与统计流形和仿射超曲面理论相关的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信