A note on Turing–Hopf bifurcation in a diffusive Leslie–Gower model with weak Allee effect on prey and fear effect on predator

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Wenjie Li , Letian Zhang , Jinde Cao
{"title":"A note on Turing–Hopf bifurcation in a diffusive Leslie–Gower model with weak Allee effect on prey and fear effect on predator","authors":"Wenjie Li ,&nbsp;Letian Zhang ,&nbsp;Jinde Cao","doi":"10.1016/j.aml.2025.109741","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the dynamics of a diffusive Leslie–Gower model incorporating a weak Allee effect on prey and a fear effect on predators. First, we derive the relevant characteristic equations. Subsequently, we analyze the existence of Turing Hopf bifurcation–phenomena that characterize the emergence of spatial patterns and temporal oscillations driven by diffusion and population dynamics, respectively. Finally, we perform numerical simulations to validate our theoretical results and further illustrate the model dynamics with both weak Allee and predator fear effects.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109741"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002915","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the dynamics of a diffusive Leslie–Gower model incorporating a weak Allee effect on prey and a fear effect on predators. First, we derive the relevant characteristic equations. Subsequently, we analyze the existence of Turing Hopf bifurcation–phenomena that characterize the emergence of spatial patterns and temporal oscillations driven by diffusion and population dynamics, respectively. Finally, we perform numerical simulations to validate our theoretical results and further illustrate the model dynamics with both weak Allee and predator fear effects.
对猎物弱Allee效应和捕食者弱恐惧效应的扩散性Leslie-Gower模型的图灵- hopf分岔注释
在本文中,我们研究了一个扩散性的Leslie-Gower模型的动力学,该模型包含了对猎物的弱Allee效应和对捕食者的恐惧效应。首先,我们推导了相关的特征方程。随后,我们分析了图灵霍普夫分岔现象的存在性,图灵霍普夫分岔现象分别表征了由扩散和种群动态驱动的空间模式和时间振荡的出现。最后,我们通过数值模拟验证了我们的理论结果,并进一步说明了弱通道和捕食者恐惧效应下的模型动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信