The DUS-transformed generalized linear failure rate distribution: Properties, estimation, and applications

IF 3.3 Q2 MULTIDISCIPLINARY SCIENCES
Mohammed Elgarhy , Diaa S. Metwally , Ibrahim E. Ragab , Sule Omeiza Bashiru , H.E. Semary , Ahmed M. Gemeay
{"title":"The DUS-transformed generalized linear failure rate distribution: Properties, estimation, and applications","authors":"Mohammed Elgarhy ,&nbsp;Diaa S. Metwally ,&nbsp;Ibrahim E. Ragab ,&nbsp;Sule Omeiza Bashiru ,&nbsp;H.E. Semary ,&nbsp;Ahmed M. Gemeay","doi":"10.1016/j.sciaf.2025.e02891","DOIUrl":null,"url":null,"abstract":"<div><div>Probability distributions are fundamental tools in statistics, enabling the modeling and analysis of random phenomena across diverse fields such as engineering, medicine, finance, and environmental science. However, classical distributions often exhibit limitations in capturing the complexity of real-world data. This study addresses these limitations by introducing the DUS-transformed generalized linear failure rate (DUS-GLF) distribution, a novel extension of the generalized linear failure rate (GLF) distribution using the DUS transformation technique. The DUS-GLF distribution enhances the flexibility of the GLF model, enabling it to accommodate a wider range of data behaviors. Key statistical properties of the DUS-GLF distribution, such as its hazard rate function, moments, incomplete moments, entropy, and extropy, are derived. Sixteen estimation methods are employed to estimate the parameters of the DUS-GLF distribution, ensuring its practical applicability. The performance of the DUS-GLF distribution is evaluated using two real-world datasets, demonstrating its superior goodness-of-fit and predictive accuracy compared to other competing models. This research provides a robust statistical tool for complex data modeling, enhancing both theoretical and applied statistical analysis.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"29 ","pages":"Article e02891"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625003618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Probability distributions are fundamental tools in statistics, enabling the modeling and analysis of random phenomena across diverse fields such as engineering, medicine, finance, and environmental science. However, classical distributions often exhibit limitations in capturing the complexity of real-world data. This study addresses these limitations by introducing the DUS-transformed generalized linear failure rate (DUS-GLF) distribution, a novel extension of the generalized linear failure rate (GLF) distribution using the DUS transformation technique. The DUS-GLF distribution enhances the flexibility of the GLF model, enabling it to accommodate a wider range of data behaviors. Key statistical properties of the DUS-GLF distribution, such as its hazard rate function, moments, incomplete moments, entropy, and extropy, are derived. Sixteen estimation methods are employed to estimate the parameters of the DUS-GLF distribution, ensuring its practical applicability. The performance of the DUS-GLF distribution is evaluated using two real-world datasets, demonstrating its superior goodness-of-fit and predictive accuracy compared to other competing models. This research provides a robust statistical tool for complex data modeling, enhancing both theoretical and applied statistical analysis.
dus变换广义线性故障率分布:性质、估计和应用
概率分布是统计学中的基本工具,可以对工程、医学、金融和环境科学等不同领域的随机现象进行建模和分析。然而,经典分布在捕获真实世界数据的复杂性方面经常表现出局限性。本研究通过引入DUS变换广义线性故障率(DUS-GLF)分布来解决这些限制,这是使用DUS变换技术对广义线性故障率(GLF)分布的新扩展。DUS-GLF分布增强了GLF模型的灵活性,使其能够适应更广泛的数据行为。推导了us - glf分布的关键统计性质,如其危险率函数、矩、不完全矩、熵和熵。采用了16种估计方法对us - glf分布的参数进行估计,保证了其实际适用性。使用两个真实数据集评估了us - glf分布的性能,与其他竞争模型相比,显示了其优越的拟合优度和预测精度。本研究为复杂数据建模提供了一个强大的统计工具,增强了理论和应用统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信