Experimental characterization of primary breakup in an air-swirl-assisted liquid jet atomizer

Q1 Chemical Engineering
S Karthick, K Balaji
{"title":"Experimental characterization of primary breakup in an air-swirl-assisted liquid jet atomizer","authors":"S Karthick,&nbsp;K Balaji","doi":"10.1016/j.ijft.2025.101402","DOIUrl":null,"url":null,"abstract":"<div><div>A novel atomizer utilizing air-induced swirling flow has been experimentally tested to enhance the breakup of high-inertia liquid jets into ligaments and droplets. The tangential swirl generates centrifugal forces that thin the liquid film and promote radial dispersion. The liquid exits the nozzle at high velocity, accompanied by superimposed swirl and shear, resulting in finer droplet formation. Primary breakup dynamics were captured using high-speed imaging under a range of liquid-to-gas Weber number ratios (0.3–42). Key stability parameters - including interfacial wave growth rate (0.035–0.08 m/s), breakup frequency (26.5–80.2 Hz), critical wavenumber (354.6–645.9 rad/m), and breakup length (0.05–0.41 m)-were quantitatively extracted. Improved empirical correlations for these parameters were established within the tested Weber number range. Compared to parallel-flow air-assisted atomizers without swirl, the swirling configuration demonstrated superior breakup efficiency, even at high liquid velocities.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"29 ","pages":"Article 101402"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725003489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A novel atomizer utilizing air-induced swirling flow has been experimentally tested to enhance the breakup of high-inertia liquid jets into ligaments and droplets. The tangential swirl generates centrifugal forces that thin the liquid film and promote radial dispersion. The liquid exits the nozzle at high velocity, accompanied by superimposed swirl and shear, resulting in finer droplet formation. Primary breakup dynamics were captured using high-speed imaging under a range of liquid-to-gas Weber number ratios (0.3–42). Key stability parameters - including interfacial wave growth rate (0.035–0.08 m/s), breakup frequency (26.5–80.2 Hz), critical wavenumber (354.6–645.9 rad/m), and breakup length (0.05–0.41 m)-were quantitatively extracted. Improved empirical correlations for these parameters were established within the tested Weber number range. Compared to parallel-flow air-assisted atomizers without swirl, the swirling configuration demonstrated superior breakup efficiency, even at high liquid velocities.
空气旋流辅助液体射流雾化器一次破碎的实验表征
实验测试了一种利用空气诱导旋流的新型雾化器,以增强高惯性液体射流成韧带和液滴的分裂。切向旋流产生离心力,使液膜变薄,促进径向分散。液体高速离开喷嘴,伴随着涡流和剪切的叠加,形成更细的液滴。在液气韦伯数比(0.3-42)范围内,利用高速成像技术捕获了初级破裂动力学。定量提取了界面波生长速率(0.035 ~ 0.08 m/s)、破裂频率(26.5 ~ 80.2 Hz)、临界波数(354.6 ~ 645.9 rad/m)、破裂长度(0.05 ~ 0.41 m)等关键稳定性参数。在测试的韦伯数范围内建立了这些参数的改进的经验相关性。与没有旋流的平行流空气辅助雾化器相比,即使在高液体速度下,旋流结构也显示出更高的破碎效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信