{"title":"Toxoplasma gondii-derived nanocarriers: leveraging protozoan membrane biology for scalable immune modulation and therapeutic delivery","authors":"Jiating Chen , Pengfei Zhang , Hongjuan Peng , Jihong Chen","doi":"10.1016/j.bioactmat.2025.08.037","DOIUrl":null,"url":null,"abstract":"<div><div>Cell membrane-derived nanovesicles (CMNVs) are nanoscale lipid bilayer structures obtained from cellular membranes that serve as biomimetic drug delivery platforms, offering immune evasion, targeting, and surface functionalization capabilities. While most CMNVs originate from mammalian cells, <em>Toxoplasma gondii</em> (<em>T. gondii</em>), a genetically tractable protozoan with a structurally distinct membrane, offers a high-yield and underexplored source for producing <em>T. gondii</em>-derived CMNVs (<em>Tg</em>CMNVs). These vesicles are obtained from the parasite's plasma membrane and inner membrane complex and retain unique features including abundant GPI-anchored SRS proteins, phosphatidylthreonine-rich lipids, and an editable genome, enabling versatile engineering via genetic and chemical strategies. We review methods for <em>Tg</em>CMNV fabrication, purification, and functionalization, and evaluate their potential in immunomodulation, attenuation of tissue injury, cancer immunotherapy, and self-adjuvanting vaccine design. By combining intrinsic immune engagement with programmable surface architecture, <em>Tg</em>CMNVs could serve as a complementary and adaptable platform alongside established CMNV systems. Finally, we discuss key translational considerations, including scalable production, immunogenicity control, regulatory compliance, and stability testing, which will be essential for assessing the feasibility of <em>Tg</em>CMNVs in clinical applications.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"54 ","pages":"Pages 602-613"},"PeriodicalIF":18.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25003998","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cell membrane-derived nanovesicles (CMNVs) are nanoscale lipid bilayer structures obtained from cellular membranes that serve as biomimetic drug delivery platforms, offering immune evasion, targeting, and surface functionalization capabilities. While most CMNVs originate from mammalian cells, Toxoplasma gondii (T. gondii), a genetically tractable protozoan with a structurally distinct membrane, offers a high-yield and underexplored source for producing T. gondii-derived CMNVs (TgCMNVs). These vesicles are obtained from the parasite's plasma membrane and inner membrane complex and retain unique features including abundant GPI-anchored SRS proteins, phosphatidylthreonine-rich lipids, and an editable genome, enabling versatile engineering via genetic and chemical strategies. We review methods for TgCMNV fabrication, purification, and functionalization, and evaluate their potential in immunomodulation, attenuation of tissue injury, cancer immunotherapy, and self-adjuvanting vaccine design. By combining intrinsic immune engagement with programmable surface architecture, TgCMNVs could serve as a complementary and adaptable platform alongside established CMNV systems. Finally, we discuss key translational considerations, including scalable production, immunogenicity control, regulatory compliance, and stability testing, which will be essential for assessing the feasibility of TgCMNVs in clinical applications.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.