All-organic S-scheme carbon nitride/perylene imide heterojunction with π-π stacking modulates the PCET process for CO2 photoreduction

IF 14.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jinbo Xue, Qiurong Li, Shuhan Sun, Shilong Feng, Hengrui Jian, Zhanfeng Li, Qianqian Shen, Yuxing Yan
{"title":"All-organic S-scheme carbon nitride/perylene imide heterojunction with π-π stacking modulates the PCET process for CO2 photoreduction","authors":"Jinbo Xue, Qiurong Li, Shuhan Sun, Shilong Feng, Hengrui Jian, Zhanfeng Li, Qianqian Shen, Yuxing Yan","doi":"10.1016/j.jmst.2025.08.026","DOIUrl":null,"url":null,"abstract":"It is a critical proposition to efficiently convert CO<sub>2</sub> into hydrocarbon fuel utilizing photocatalytic technology. However, the insufficient thermodynamic potential of photogenerated carriers and the sluggish multi-proton coupled electron transfer (PCET) process severely hinder the formation of CH<sub>4</sub> and other hydrocarbons. Hence, we constructed an all-organic S-scheme heterojunction photocatalyst (CN/UPDI-<em>x</em>) with large π-delocalization via π-π interactions, with CO and CH<sub>4</sub> yields of 34.10 and 4.55 μmol g<sup>−1</sup> h<sup>−1</sup>, where the CH<sub>4</sub> yields were 12.3 and 11.7 times higher than those of pristine CN and UPDI, respectively. The S-scheme heterojunction improves the separation efficiency of photogenerated electron-hole pairs, preserves the highly oxidizing holes required for accelerating water oxidation for H* production, and enables a substantial accumulation of high-energy electrons that drive the conversion of reaction intermediates. Moreover, the extensive π-electron delocalization system formed by CN and UPDI offers an efficient pathway for the rapid transport of photogenerated electrons. The high-efficiency supply of H* coupled with CO<sub>2</sub> adsorbed on the CN at the heterojunction interface to form intermediate *CHO. This intermediate is further transformed into CH<sub>4</sub> through a multi-step hydrogenation process. This work provides novel perspectives for the design and development of organic polymer semiconductor photocatalysts applicable to environmental protection and clean energy production.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"71 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.08.026","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It is a critical proposition to efficiently convert CO2 into hydrocarbon fuel utilizing photocatalytic technology. However, the insufficient thermodynamic potential of photogenerated carriers and the sluggish multi-proton coupled electron transfer (PCET) process severely hinder the formation of CH4 and other hydrocarbons. Hence, we constructed an all-organic S-scheme heterojunction photocatalyst (CN/UPDI-x) with large π-delocalization via π-π interactions, with CO and CH4 yields of 34.10 and 4.55 μmol g−1 h−1, where the CH4 yields were 12.3 and 11.7 times higher than those of pristine CN and UPDI, respectively. The S-scheme heterojunction improves the separation efficiency of photogenerated electron-hole pairs, preserves the highly oxidizing holes required for accelerating water oxidation for H* production, and enables a substantial accumulation of high-energy electrons that drive the conversion of reaction intermediates. Moreover, the extensive π-electron delocalization system formed by CN and UPDI offers an efficient pathway for the rapid transport of photogenerated electrons. The high-efficiency supply of H* coupled with CO2 adsorbed on the CN at the heterojunction interface to form intermediate *CHO. This intermediate is further transformed into CH4 through a multi-step hydrogenation process. This work provides novel perspectives for the design and development of organic polymer semiconductor photocatalysts applicable to environmental protection and clean energy production.

Abstract Image

具有π-π堆叠的全有机S-scheme氮化碳/苝酰亚胺异质结调节CO2光还原PCET过程
利用光催化技术高效地将CO2转化为碳氢燃料是一个关键问题。然而,光生载流子的热力学势不足和多质子耦合电子转移(PCET)过程缓慢严重阻碍了CH4和其他碳氢化合物的形成。因此,我们构建了一个具有π-π相互作用的大π离域的全有机s型异质结光催化剂(CN/UPDI-x), CO和CH4产率分别为34.10和4.55 μmol g−1 h−1,其中CH4产率分别是原始CN和UPDI的12.3和11.7倍。s方案异质结提高了光生电子-空穴对的分离效率,保留了加速水氧化生成H*所需的高氧化空穴,并使大量高能电子的积累能够驱动反应中间体的转化。此外,CN和UPDI形成的广泛π-电子离域体系为光生电子的快速输运提供了有效途径。高效供给的H*与CO2在异质结界面吸附在CN上形成中间的*CHO。该中间体通过多步氢化过程进一步转化为CH4。本研究为设计和开发适用于环境保护和清洁能源生产的有机聚合物半导体光催化剂提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信