Evidence for polycyclic aromatic hydrocarbons detected in sulfates at Jezero crater by the Perseverance rover

IF 14.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Teresa Fornaro, Sunanda Sharma, Ryan S. Jakubek, Giovanni Poggiali, John Robert Brucato, Rohit Bhartia, Andrew Steele, Ashley E. Murphy, Michael M. Tice, Mitchell D. Schulte, Kevin P. Hand, Marc D. Fries, William J. Abbey, Andrew Alberini, Daniela Alvarado-Jiménez, Kathleen C. Benison, Eve L. Berger, Sole Biancalani, Adrian J. Brown, Adrian P. Broz, Wayne P. Buckley, Denise K. Buckner, Aaron S. Burton, Sergei V. Bykov, Emily L. Cardarelli, Edward A. Cloutis, Stephanie A. Connell, Cristina Garcia-Florentino, Felipe Gómez, Nikole C. Haney, Carina Lee, Valeria Lino, Paola Manini, Francis M. McCubbin, Michelle E. Minitti, Richard V. Morris, Yu Yu Phua, Nicolas Randazzo, Joseph Razzell Hollis, Francesco Renzi, Sandra Siljeström, Justin I. Simon, Anushree Srivastava, Nicola Tasinato, Kyle Uckert, Roger C. Wiens, Amy J. Williams
{"title":"Evidence for polycyclic aromatic hydrocarbons detected in sulfates at Jezero crater by the Perseverance rover","authors":"Teresa Fornaro, Sunanda Sharma, Ryan S. Jakubek, Giovanni Poggiali, John Robert Brucato, Rohit Bhartia, Andrew Steele, Ashley E. Murphy, Michael M. Tice, Mitchell D. Schulte, Kevin P. Hand, Marc D. Fries, William J. Abbey, Andrew Alberini, Daniela Alvarado-Jiménez, Kathleen C. Benison, Eve L. Berger, Sole Biancalani, Adrian J. Brown, Adrian P. Broz, Wayne P. Buckley, Denise K. Buckner, Aaron S. Burton, Sergei V. Bykov, Emily L. Cardarelli, Edward A. Cloutis, Stephanie A. Connell, Cristina Garcia-Florentino, Felipe Gómez, Nikole C. Haney, Carina Lee, Valeria Lino, Paola Manini, Francis M. McCubbin, Michelle E. Minitti, Richard V. Morris, Yu Yu Phua, Nicolas Randazzo, Joseph Razzell Hollis, Francesco Renzi, Sandra Siljeström, Justin I. Simon, Anushree Srivastava, Nicola Tasinato, Kyle Uckert, Roger C. Wiens, Amy J. Williams","doi":"10.1038/s41550-025-02638-z","DOIUrl":null,"url":null,"abstract":"<p>The search for organic molecules on Mars is central to understanding the planet’s past habitability and potential for ancient life. Although organic molecules have previously been detected on Mars, their nature, origin and preservation mechanisms remain debated. On the floor of the Jezero crater—an ancient delta–lake system on Mars—the Perseverance rover detected Raman features that may be due to organic compounds spatially associated with sulfates, although their origin is uncertain. Here we report the detection of similar Raman features in the Jezero fan top and attribute them to polycyclic aromatic hydrocarbons based on comparisons with laboratory data. We propose that these polycyclic aromatic hydrocarbons may have formed through endogenous igneous processes and were subsequently preserved by sulfate precipitation. These findings align with previous studies on Martian meteorites and at Gale crater, underscoring the role of sulfates in preserving organic matter on Mars. Returning these samples to Earth would be key to assess their astrobiological relevance.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"24 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02638-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The search for organic molecules on Mars is central to understanding the planet’s past habitability and potential for ancient life. Although organic molecules have previously been detected on Mars, their nature, origin and preservation mechanisms remain debated. On the floor of the Jezero crater—an ancient delta–lake system on Mars—the Perseverance rover detected Raman features that may be due to organic compounds spatially associated with sulfates, although their origin is uncertain. Here we report the detection of similar Raman features in the Jezero fan top and attribute them to polycyclic aromatic hydrocarbons based on comparisons with laboratory data. We propose that these polycyclic aromatic hydrocarbons may have formed through endogenous igneous processes and were subsequently preserved by sulfate precipitation. These findings align with previous studies on Martian meteorites and at Gale crater, underscoring the role of sulfates in preserving organic matter on Mars. Returning these samples to Earth would be key to assess their astrobiological relevance.

Abstract Image

毅力号探测器在耶泽罗陨石坑的硫酸盐中发现了多环芳烃的证据
在火星上寻找有机分子对于了解火星过去的可居住性和古代生命的可能性至关重要。虽然以前在火星上发现过有机分子,但它们的性质、起源和保存机制仍存在争议。在耶泽罗陨石坑(火星上一个古老的三角洲湖泊系统)的底部,毅力号探测器探测到了拉曼特征,这些特征可能是由与硫酸盐有关的有机化合物在空间上造成的,尽管它们的来源尚不确定。在这里,我们报告了在耶泽罗扇顶检测到类似的拉曼特征,并根据与实验室数据的比较将其归因于多环芳烃。我们认为这些多环芳烃可能是通过内源性火成岩过程形成的,随后被硫酸盐沉淀保存下来。这些发现与之前对火星陨石和盖尔陨石坑的研究一致,强调了硫酸盐在保存火星上有机物质的作用。将这些样本送回地球将是评估其天体生物学相关性的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信