Anina Seidemo, Linda Knutsson, Nirbhay N Yadav, Pia C Sundgren, Ronnie Wirestam, Peter Cm van Zijl
{"title":"Cerebral glucose delivery, transport and metabolism: Theory and modeling using four, three, and two tissue compartments.","authors":"Anina Seidemo, Linda Knutsson, Nirbhay N Yadav, Pia C Sundgren, Ronnie Wirestam, Peter Cm van Zijl","doi":"10.1177/0271678X251366074","DOIUrl":null,"url":null,"abstract":"<p><p>Flux equations describing brain D-glucose uptake are presented for up to four tissue compartments: blood, endothelial intracellular space in the blood-brain barrier (BBB), extravascular-extracellular space (EES), and intracellular space. Transport rates are described by Michaelis-Menten kinetics, including half-saturation constants (<math><msub><mrow><mi>K</mi></mrow><mrow><mi>T</mi></mrow></msub></math>) and maximum rates for transport<math><mi> </mi><msub><mrow><mo>(</mo><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>)</mo><mi> </mi></math>over the BBB and the cell membrane (CMB). These transport parameters and the maximum rate for hexokinase-catalyzed metabolism (<math><msubsup><mrow><mi>V</mi></mrow><mrow><mi>max</mi></mrow><mrow><mi>H</mi><mi>K</mi></mrow></msubsup></math>) were determined by numerical fitting of the models to both steady-state and dynamic D-glucose uptake data in human gray matter from MRS. Two-, three-, and four-compartment results are compared, including effects of incorporating an endothelial compartment with unequal ratios (<math><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi><mo>/</mo><mi>L</mi></mrow></msub></math>) of GLUT1 receptors on abluminal and luminal membranes. Four-compartment fitting with<math><mi> </mi><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi><mo>/</mo><mi>L</mi></mrow></msub><mo>=</mo><mn>2.0</mn><mi> </mi></math>resulted in<math><mi> </mi><msubsup><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow><mrow><mi>BBB</mi></mrow></msubsup><mo>=</mo><mn>0.804</mn><mo>±</mo><mn>0.131</mn><mo> </mo></math>µmol/g/min,<math><mi> </mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>BBB</mi></mrow></msubsup><mo>=</mo><mn>6.20</mn><mo>±</mo><mn>1.53</mn><mo> </mo></math>mM,<math><mi> </mi><msubsup><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow><mrow><mi>CMB</mi></mrow></msubsup><mo>=</mo><mn>1.04</mn><mo>±</mo><mn>0.25</mn><mo> </mo></math>µmol/g/min,<math><mi> </mi><msubsup><mrow><mi>K</mi></mrow><mrow><mi>T</mi></mrow><mrow><mi>CMB</mi></mrow></msubsup><mo>=</mo><mn>3.10</mn><mo>±</mo><mn>0.70</mn><mo> </mo></math>mM and<math><mi> </mi><msubsup><mrow><mi>V</mi></mrow><mrow><mi>max</mi></mrow><mrow><mi>H</mi><mi>K</mi></mrow></msubsup><mo>=</mo><mn>0.260</mn><mo>±</mo><mn>0.039</mn><mo> </mo></math>µmol/g/min, comparing well with the simpler models. A model with at least three tissue compartments (blood, EES, cell) is essential for quantification and interpretation of dynamic glucose-enhanced (DGE) MRI data in brain tumors, where signal intensities depend on compartmental pH in addition to concentration, and where the signal contribution from the EES is dominant. It should also be relevant to PET and MR(S) studies of pathologies where the BBB is compromised.</p>","PeriodicalId":520660,"journal":{"name":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251366074"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0271678X251366074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flux equations describing brain D-glucose uptake are presented for up to four tissue compartments: blood, endothelial intracellular space in the blood-brain barrier (BBB), extravascular-extracellular space (EES), and intracellular space. Transport rates are described by Michaelis-Menten kinetics, including half-saturation constants () and maximum rates for transportover the BBB and the cell membrane (CMB). These transport parameters and the maximum rate for hexokinase-catalyzed metabolism () were determined by numerical fitting of the models to both steady-state and dynamic D-glucose uptake data in human gray matter from MRS. Two-, three-, and four-compartment results are compared, including effects of incorporating an endothelial compartment with unequal ratios () of GLUT1 receptors on abluminal and luminal membranes. Four-compartment fitting withresulted inµmol/g/min,mM,µmol/g/min,mM andµmol/g/min, comparing well with the simpler models. A model with at least three tissue compartments (blood, EES, cell) is essential for quantification and interpretation of dynamic glucose-enhanced (DGE) MRI data in brain tumors, where signal intensities depend on compartmental pH in addition to concentration, and where the signal contribution from the EES is dominant. It should also be relevant to PET and MR(S) studies of pathologies where the BBB is compromised.
描述脑d-葡萄糖摄取的通量方程提出了四个组织区室:血液,血脑屏障中的内皮细胞内空间(BBB),血管外-细胞外空间(EES)和细胞内空间。运输速率由Michaelis-Menten动力学描述,包括半饱和常数(KT)和血脑屏障和细胞膜的最大运输速率(Tmax) (CMB)。这些运输参数和己糖激酶催化代谢的最大速率(VmaxHK)是通过数值拟合模型来确定的,该模型与mrs的稳态和动态人体灰质d -葡萄糖摄取数据相匹配,比较了二室、三室和四室的结果,包括在内皮室中加入不相等比例(RA/L)的GLUT1受体对管腔和管腔膜的影响。RA/L=2.0的四室拟合结果显示,TmaxBBB=0.804±0.131µmol/g/min, KTBBB=6.20±1.53 mM, TmaxCMB=1.04±0.25µmol/g/min, KTCMB=3.10±0.70 mM, VmaxHK=0.260±0.039µmol/g/min,与简单模型比较效果良好。至少包含三个组织区室(血液、EES、细胞)的模型对于脑肿瘤中动态葡萄糖增强(DGE) MRI数据的量化和解释至关重要,其中信号强度除了浓度外还取决于区室pH值,并且EES的信号贡献占主导地位。它也应该与血脑屏障受损病理的PET和MR(S)研究相关。