Tau and Amyloid beta causes microglial activation in Alzheimer's disease.

Advances in clinical chemistry Pub Date : 2025-01-01 Epub Date: 2025-07-11 DOI:10.1016/bs.acc.2025.06.002
Subashchandrabose Chinnathambi, Anusree Adithyan, Madhura Chandrashekar, Nagaraj Rangappa
{"title":"Tau and Amyloid beta causes microglial activation in Alzheimer's disease.","authors":"Subashchandrabose Chinnathambi, Anusree Adithyan, Madhura Chandrashekar, Nagaraj Rangappa","doi":"10.1016/bs.acc.2025.06.002","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is a neurodegenerative condition characterized by the accumulation of hyperphosphorylated Tau in neurofibrillary tangles and amyloid-beta plaques. Tau, a microtubule-associated protein essential for neuronal stability, detaches from microtubules upon hyperphosphorylation, forming aggregates that disrupt neuronal function. Amyloid beta (Aβ) plaques act as upstream triggers, promoting Tau hyperphosphorylation and activating glial cells, particularly microglia and astrocytes. While these glial cells initially serve protective roles, their chronic activation leads to neuroinflammation, oxidative stress, and neuronal damage. Calcium dysregulation further exacerbates AD pathology by contributing to Tau hyperphosphorylation, mitochondrial dysfunction, and Aβ generation. This review highlights the intricate interplay between Tau, Aβ, and glial cells in the progression of AD, emphasizing both their protective and detrimental roles. It also explores the therapeutic implications of targeting these pathways, including modulating Tau phosphorylation, enhancing Aβ clearance, regulating glial activation, restoring calcium homeostasis, and preserving mitochondrial function. By addressing these multifaceted processes, this review underscores the potential for novel therapeutic strategies to slow or manage the progression of AD, ultimately improving patient outcomes.</p>","PeriodicalId":101297,"journal":{"name":"Advances in clinical chemistry","volume":"128 ","pages":"83-107"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in clinical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.acc.2025.06.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease is a neurodegenerative condition characterized by the accumulation of hyperphosphorylated Tau in neurofibrillary tangles and amyloid-beta plaques. Tau, a microtubule-associated protein essential for neuronal stability, detaches from microtubules upon hyperphosphorylation, forming aggregates that disrupt neuronal function. Amyloid beta (Aβ) plaques act as upstream triggers, promoting Tau hyperphosphorylation and activating glial cells, particularly microglia and astrocytes. While these glial cells initially serve protective roles, their chronic activation leads to neuroinflammation, oxidative stress, and neuronal damage. Calcium dysregulation further exacerbates AD pathology by contributing to Tau hyperphosphorylation, mitochondrial dysfunction, and Aβ generation. This review highlights the intricate interplay between Tau, Aβ, and glial cells in the progression of AD, emphasizing both their protective and detrimental roles. It also explores the therapeutic implications of targeting these pathways, including modulating Tau phosphorylation, enhancing Aβ clearance, regulating glial activation, restoring calcium homeostasis, and preserving mitochondrial function. By addressing these multifaceted processes, this review underscores the potential for novel therapeutic strategies to slow or manage the progression of AD, ultimately improving patient outcomes.

Tau蛋白和β淀粉样蛋白在阿尔茨海默病中引起小胶质细胞激活。
阿尔茨海默病是一种神经退行性疾病,其特征是神经原纤维缠结和淀粉样斑块中过度磷酸化Tau的积累。Tau是一种对神经元稳定至关重要的微管相关蛋白,在过度磷酸化时从微管分离,形成破坏神经元功能的聚集体。淀粉样蛋白(Aβ)斑块作为上游触发器,促进Tau过度磷酸化并激活胶质细胞,特别是小胶质细胞和星形胶质细胞。虽然这些神经胶质细胞最初起到保护作用,但它们的慢性激活会导致神经炎症、氧化应激和神经元损伤。钙失调通过促进Tau过度磷酸化、线粒体功能障碍和Aβ生成进一步加剧AD病理。这篇综述强调了Tau、Aβ和胶质细胞在AD进展中的复杂相互作用,强调了它们的保护和有害作用。它还探讨了靶向这些途径的治疗意义,包括调节Tau磷酸化,增强Aβ清除,调节胶质细胞激活,恢复钙稳态和保护线粒体功能。通过解决这些多方面的过程,本综述强调了新的治疗策略的潜力,以减缓或控制AD的进展,最终改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信