LocPro: A deep learning-based prediction of protein subcellular localization for promoting multi-directional pharmaceutical research.

IF 8.9
Journal of pharmaceutical analysis Pub Date : 2025-08-01 Epub Date: 2025-03-05 DOI:10.1016/j.jpha.2025.101255
Yintao Zhang, Lingyan Zheng, Nanxin You, Wei Hu, Wanghao Jiang, Mingkun Lu, Hangwei Xu, Haibin Dai, Tingting Fu, Ying Zhou
{"title":"LocPro: A deep learning-based prediction of protein subcellular localization for promoting multi-directional pharmaceutical research.","authors":"Yintao Zhang, Lingyan Zheng, Nanxin You, Wei Hu, Wanghao Jiang, Mingkun Lu, Hangwei Xu, Haibin Dai, Tingting Fu, Ying Zhou","doi":"10.1016/j.jpha.2025.101255","DOIUrl":null,"url":null,"abstract":"<p><p>Drug development encompasses multiple processes, wherein protein subcellular localization is essential. It promotes target identification, treatment development, and the design of drug delivery systems. In this research, a deep learning framework called LocPro is presented for predicting protein subcellular localization. Specifically, LocPro is unique in (a) combining protein representations from the pre-trained large language model (LLM) ESM2 and the expert-driven tool PROFEAT, (b) implementing a hybrid deep neural network architecture that integrates convolutional neural network (CNN), fully connected (FC) layer, and bidirectional long short-term memory (BiLSTM) blocks, and (c) developing a multi-label framework for predicting protein subcellular localization at multiple granularity levels. Additionally, a dataset was curated and divided using a homology-based strategy for training and validation. Comparative analyses show that LocPro outperforms existing methods in sequence-based multi-label protein subcellular localization prediction. The practical utility of this framework is further demonstrated through case studies on drug target subcellular localization. All in all, LocPro serves as a valuable complement to existing protein localization prediction tools. The web server is freely accessible at https://idrblab.org/LocPro/.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 8","pages":"101255"},"PeriodicalIF":8.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drug development encompasses multiple processes, wherein protein subcellular localization is essential. It promotes target identification, treatment development, and the design of drug delivery systems. In this research, a deep learning framework called LocPro is presented for predicting protein subcellular localization. Specifically, LocPro is unique in (a) combining protein representations from the pre-trained large language model (LLM) ESM2 and the expert-driven tool PROFEAT, (b) implementing a hybrid deep neural network architecture that integrates convolutional neural network (CNN), fully connected (FC) layer, and bidirectional long short-term memory (BiLSTM) blocks, and (c) developing a multi-label framework for predicting protein subcellular localization at multiple granularity levels. Additionally, a dataset was curated and divided using a homology-based strategy for training and validation. Comparative analyses show that LocPro outperforms existing methods in sequence-based multi-label protein subcellular localization prediction. The practical utility of this framework is further demonstrated through case studies on drug target subcellular localization. All in all, LocPro serves as a valuable complement to existing protein localization prediction tools. The web server is freely accessible at https://idrblab.org/LocPro/.

Abstract Image

Abstract Image

Abstract Image

LocPro:基于深度学习的蛋白质亚细胞定位预测,促进多方位的药物研究。
药物开发包括多个过程,其中蛋白质亚细胞定位是必不可少的。它促进了目标识别、治疗开发和药物输送系统的设计。在这项研究中,提出了一个名为LocPro的深度学习框架,用于预测蛋白质亚细胞定位。具体来说,LocPro在以下方面是独特的:(a)结合了来自预训练的大型语言模型(LLM) ESM2和专家驱动工具PROFEAT的蛋白质表示,(b)实现了一个混合深度神经网络架构,该架构集成了卷积神经网络(CNN)、全连接(FC)层和双向长短期记忆(BiLSTM)块,以及(c)开发了一个多标签框架,用于在多个粒度级别预测蛋白质亚细胞定位。此外,使用基于同源性的策略对数据集进行管理和划分,以进行训练和验证。对比分析表明,LocPro在基于序列的多标签蛋白亚细胞定位预测方面优于现有方法。通过药物靶亚细胞定位的案例研究进一步证明了该框架的实际效用。总而言之,LocPro是现有蛋白质定位预测工具的宝贵补充。web服务器可以在https://idrblab.org/LocPro/上免费访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信