Alan Mauro Bernal, Fernando Nicolás Sosa, Yina María Carpintero-Polanco, Camila Dara Cancino, Romina Jimena Fernández-Brando, María Victoria Ramos, Ariel Podhozer, Agustina Errea, Martín Rumbo, Marina Sandra Palermo
{"title":"Neutralizing antibodies in the intestinal mucosa are essential to control gastrointestinal infection by Shiga toxin-producing <i>Escherichia coli</i>.","authors":"Alan Mauro Bernal, Fernando Nicolás Sosa, Yina María Carpintero-Polanco, Camila Dara Cancino, Romina Jimena Fernández-Brando, María Victoria Ramos, Ariel Podhozer, Agustina Errea, Martín Rumbo, Marina Sandra Palermo","doi":"10.1002/mlf2.70026","DOIUrl":null,"url":null,"abstract":"<p><p>Infections with Shiga toxin (Stx)-producing <i>Escherichia coli</i> (STEC) strains can result in a wide range of clinical presentations. Despite STEC O157:H7 being the serotype most frequently associated with hemolytic uremic syndrome (HUS), in some patients, a self-limited gastrointestinal infection is observed. We have previously demonstrated that genetic differences between BALB/c and C57BL/6 mice account for a different outcome after an experimental gastrointestinal STEC O157:H7 infection, in which the better outcome observed in BALB/c mice was associated with a Th-2 biased immune response. The objective of this study was to determine the role of anti-STEC antibodies during STEC O157:H7 infections. We first demonstrated that the B-cell-dependent response triggered upon STEC O157:H7 infection is necessary to keep BALB/c mice healthy and reciprocally C57BL/6 mice pre-challenged with an Stx2-deficient STEC O157:H7 strain were able to survive, remaining healthy after a subsequent STEC O157:H7 infection. We further proved that anti-STEC O157:H7 antibodies raised after infection have binding specificity against STEC O157:H7 bacteria, recognize H7, and have neutralizing capacitiy, by interfering with important pathogenic mechanisms such as motility and adhesion to intestinal epithelial cells. We conclude that local and/or systemic specific antibodies against STEC mediate prevention of lethal complications during STEC O157:H7 infections.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":"4 4","pages":"409-422"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.70026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infections with Shiga toxin (Stx)-producing Escherichia coli (STEC) strains can result in a wide range of clinical presentations. Despite STEC O157:H7 being the serotype most frequently associated with hemolytic uremic syndrome (HUS), in some patients, a self-limited gastrointestinal infection is observed. We have previously demonstrated that genetic differences between BALB/c and C57BL/6 mice account for a different outcome after an experimental gastrointestinal STEC O157:H7 infection, in which the better outcome observed in BALB/c mice was associated with a Th-2 biased immune response. The objective of this study was to determine the role of anti-STEC antibodies during STEC O157:H7 infections. We first demonstrated that the B-cell-dependent response triggered upon STEC O157:H7 infection is necessary to keep BALB/c mice healthy and reciprocally C57BL/6 mice pre-challenged with an Stx2-deficient STEC O157:H7 strain were able to survive, remaining healthy after a subsequent STEC O157:H7 infection. We further proved that anti-STEC O157:H7 antibodies raised after infection have binding specificity against STEC O157:H7 bacteria, recognize H7, and have neutralizing capacitiy, by interfering with important pathogenic mechanisms such as motility and adhesion to intestinal epithelial cells. We conclude that local and/or systemic specific antibodies against STEC mediate prevention of lethal complications during STEC O157:H7 infections.