Fatai A Olabemiwo, Yuting Huang, Macy Thompson, Hanan Omar, Siddhant Kalra, Philip Arevalo, Valerie Nazzaro, Frederick M Cohan
{"title":"Metatranscriptome profile of agricultural microbial communities enriched for plastitrophy.","authors":"Fatai A Olabemiwo, Yuting Huang, Macy Thompson, Hanan Omar, Siddhant Kalra, Philip Arevalo, Valerie Nazzaro, Frederick M Cohan","doi":"10.1002/mlf2.70023","DOIUrl":null,"url":null,"abstract":"<p><p>This study identified potential plastic-degrading microorganisms and enzymes in agricultural soils using a novel two-phase enrichment approach. By culturing agricultural soil in a Winogradsky column supplemented with polyethylene (PE) sheets, followed by culture in minimal medium with low-density polyethylene (LDPE) microplastic, we identified 192 genes specifically upregulated in LDPE conditions, including 10 genes encoding known plastizymes and 182 genes encoding putative plastic-degrading enzymes. Detailed enzyme classification revealed predominant roles for oxygenases (20%) and dehydrogenases (19%), with specific subclasses showing distinct distribution patterns. These findings expand our understanding of microbial responses to plastics in agricultural environments and provide a foundation for developing bioremediation strategies to address plastic contamination in soils.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":"4 4","pages":"465-469"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.70023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study identified potential plastic-degrading microorganisms and enzymes in agricultural soils using a novel two-phase enrichment approach. By culturing agricultural soil in a Winogradsky column supplemented with polyethylene (PE) sheets, followed by culture in minimal medium with low-density polyethylene (LDPE) microplastic, we identified 192 genes specifically upregulated in LDPE conditions, including 10 genes encoding known plastizymes and 182 genes encoding putative plastic-degrading enzymes. Detailed enzyme classification revealed predominant roles for oxygenases (20%) and dehydrogenases (19%), with specific subclasses showing distinct distribution patterns. These findings expand our understanding of microbial responses to plastics in agricultural environments and provide a foundation for developing bioremediation strategies to address plastic contamination in soils.