{"title":"Overcoming cancer immunotherapy barriers via nanomaterial-mediated pyroptosis","authors":"Jianlei Xie, Baoxin Peng, Yu Xiao, Xiasang Chen, Xinyin Zhang, Diqi Chen, Lijuan Song, Meiqian Xu, Wenjing Liao and Xiaowen Zhang","doi":"10.1039/D5TB01024A","DOIUrl":null,"url":null,"abstract":"<p >While cancer immunotherapy has achieved groundbreaking clinical success, its efficacy is frequently compromised by insufficient T-cell activation, the immunosuppressive tumor microenvironment (TME), and off-target toxicity. Pyroptosis, a highly immunogenic form of programmed cell death characterized by gasdermin-mediated pore formation, massive cytokine release (<em>e.g.</em>, IL-1β and IL-18), and robust dendritic cell activation, offers a compelling strategy to overcome these limitations. This review critically examines how nanotechnology-enabled pyroptosis induction can potentiate immunotherapy by (1) classifying pyroptosis-inducing nanomaterials into five combinatorial therapeutic platforms – immune checkpoint inhibitors, vaccine adjuvants, oncolytic virus-coupled systems, innate immune sensitizers, and multi-modal hybrids; (2) elucidating their mechanisms in reshaping the TME <em>via</em> pyroptosis-induced immunogenicity and bystander immune cell activation; and (3) highlighting unresolved challenges, including tumor-intrinsic pyroptosis resistance, nanoparticle biodistribution barriers, and cytokine storm risks. By integrating fundamental insights with translational perspectives, this work provides a strategic framework for developing pyroptosis-nanotechnology synergies to achieve precision immune modulation.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 37","pages":" 11485-11507"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01024a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
While cancer immunotherapy has achieved groundbreaking clinical success, its efficacy is frequently compromised by insufficient T-cell activation, the immunosuppressive tumor microenvironment (TME), and off-target toxicity. Pyroptosis, a highly immunogenic form of programmed cell death characterized by gasdermin-mediated pore formation, massive cytokine release (e.g., IL-1β and IL-18), and robust dendritic cell activation, offers a compelling strategy to overcome these limitations. This review critically examines how nanotechnology-enabled pyroptosis induction can potentiate immunotherapy by (1) classifying pyroptosis-inducing nanomaterials into five combinatorial therapeutic platforms – immune checkpoint inhibitors, vaccine adjuvants, oncolytic virus-coupled systems, innate immune sensitizers, and multi-modal hybrids; (2) elucidating their mechanisms in reshaping the TME via pyroptosis-induced immunogenicity and bystander immune cell activation; and (3) highlighting unresolved challenges, including tumor-intrinsic pyroptosis resistance, nanoparticle biodistribution barriers, and cytokine storm risks. By integrating fundamental insights with translational perspectives, this work provides a strategic framework for developing pyroptosis-nanotechnology synergies to achieve precision immune modulation.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices