A dual-network supramolecular hydrogel dressing encapsulating Cu/EGCG nanoenzyme and glucose oxidase for closed cascade catalytic therapy of diabetic wounds
Wenli Yu, Zengzhe Liu, Shihua Mao, Lijun Hu, Yue Xi, Gaopeng Wang, Guoli Yang and Jintao Yang
{"title":"A dual-network supramolecular hydrogel dressing encapsulating Cu/EGCG nanoenzyme and glucose oxidase for closed cascade catalytic therapy of diabetic wounds","authors":"Wenli Yu, Zengzhe Liu, Shihua Mao, Lijun Hu, Yue Xi, Gaopeng Wang, Guoli Yang and Jintao Yang","doi":"10.1039/D5TB01508A","DOIUrl":null,"url":null,"abstract":"<p >Poor diabetic wound healing represents a significant threat to public health. Key obstacles include heightened oxidative stress resulting from the hyperglycemic microenvironment and increased susceptibility to bacterial infections. These factors synergistically exacerbate one another, creating a self-perpetuating cycle that hampers healing. Despite advancements in wound care, developing effective strategies to simultaneously mitigate these interconnected issues and disrupt the detrimental loop remains a critical challenge. Herein, we developed a multifunctional hydrogel dressing (PACN@CG) with glucose-depleting, reactive oxygen species (ROS)-scavenging and antibacterial properties, consisting of a double-network hydrogel, copper-based nanoenzyme and glucose oxidase (GOx), forming a combination therapy system for diabetic wound treatment. The integration of covalent and non-covalent bonds within the hydrogel endows it with a range of exceptional properties, including injectability, mechanical robustness, self-healing capability, strong biological adhesion, and biodegradability. The synergistic cascade enzyme system formed by the nanoenzyme and GOx enables self-regulated glucose depletion and ROS scavenging, thereby modulating the diabetic microenvironment while enhancing antibacterial efficacy. The efficacy of the PACN@CG hydrogel in enhancing diabetic wound healing was demonstrated using full-thickness skin wound models in diabetic mice. Consequently, this hydrogel dressing successfully reestablishes tissue redox homeostasis and promotes wound healing, presenting a highly promising approach for the treatment of diabetic wounds.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 35","pages":" 11075-11086"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01508a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Poor diabetic wound healing represents a significant threat to public health. Key obstacles include heightened oxidative stress resulting from the hyperglycemic microenvironment and increased susceptibility to bacterial infections. These factors synergistically exacerbate one another, creating a self-perpetuating cycle that hampers healing. Despite advancements in wound care, developing effective strategies to simultaneously mitigate these interconnected issues and disrupt the detrimental loop remains a critical challenge. Herein, we developed a multifunctional hydrogel dressing (PACN@CG) with glucose-depleting, reactive oxygen species (ROS)-scavenging and antibacterial properties, consisting of a double-network hydrogel, copper-based nanoenzyme and glucose oxidase (GOx), forming a combination therapy system for diabetic wound treatment. The integration of covalent and non-covalent bonds within the hydrogel endows it with a range of exceptional properties, including injectability, mechanical robustness, self-healing capability, strong biological adhesion, and biodegradability. The synergistic cascade enzyme system formed by the nanoenzyme and GOx enables self-regulated glucose depletion and ROS scavenging, thereby modulating the diabetic microenvironment while enhancing antibacterial efficacy. The efficacy of the PACN@CG hydrogel in enhancing diabetic wound healing was demonstrated using full-thickness skin wound models in diabetic mice. Consequently, this hydrogel dressing successfully reestablishes tissue redox homeostasis and promotes wound healing, presenting a highly promising approach for the treatment of diabetic wounds.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices