Improved fast non-singular adaptive super-twisting sliding mode control based on radial basis function neural network approximation for robot joint module.

IF 6.5
Xiao Lin, Junyang Li, Yankui Song, Chengguo Liu, Tianyou Yang
{"title":"Improved fast non-singular adaptive super-twisting sliding mode control based on radial basis function neural network approximation for robot joint module.","authors":"Xiao Lin, Junyang Li, Yankui Song, Chengguo Liu, Tianyou Yang","doi":"10.1016/j.isatra.2025.08.037","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes an improved fast non-singular adaptive super-twisting control scheme based on neural network to address the precise control issues of robot joint modules. Firstly, to facilitate the application of advanced control algorithms, a second-order state-space model of the joint module considering nonlinear friction and stiffness is established using the Lagrangian energy equation method. Then, an improved fast non-singular terminal sliding surface is proposed to avoid singularity and accelerate convergence. Subsequently, an equivalent control law compensator using a radial basis function neural network is designed to counteract the impact of uncertain model factors, thereby ensuring the system states closely follow the sliding surface. Furthermore, an adaptive switching control law is designed that does not require precise disturbance information, enhancing its practicality for engineering applications. Finally, simulation and experimental results under two different reference trajectories and in the presence of external disturbances demonstrate the superior trajectory tracking capability and disturbance rejection performance of the proposed control scheme.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.08.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes an improved fast non-singular adaptive super-twisting control scheme based on neural network to address the precise control issues of robot joint modules. Firstly, to facilitate the application of advanced control algorithms, a second-order state-space model of the joint module considering nonlinear friction and stiffness is established using the Lagrangian energy equation method. Then, an improved fast non-singular terminal sliding surface is proposed to avoid singularity and accelerate convergence. Subsequently, an equivalent control law compensator using a radial basis function neural network is designed to counteract the impact of uncertain model factors, thereby ensuring the system states closely follow the sliding surface. Furthermore, an adaptive switching control law is designed that does not require precise disturbance information, enhancing its practicality for engineering applications. Finally, simulation and experimental results under two different reference trajectories and in the presence of external disturbances demonstrate the superior trajectory tracking capability and disturbance rejection performance of the proposed control scheme.

基于径向基函数神经网络逼近的机器人关节模块改进快速非奇异自适应超扭滑模控制。
针对机器人关节模块的精确控制问题,提出了一种改进的基于神经网络的快速非奇异自适应超扭控制方案。首先,为了便于先进控制算法的应用,利用拉格朗日能量方程方法建立了考虑非线性摩擦和刚度的关节模块二阶状态空间模型;然后,提出了一种改进的快速非奇异终端滑动曲面,避免了奇异性,加快了收敛速度。随后,设计了一种基于径向基函数神经网络的等效控制律补偿器来抵消模型不确定性因素的影响,从而保证系统状态与滑动面密切相关。此外,设计了一种不需要精确干扰信息的自适应开关控制律,提高了其工程应用的实用性。最后,在两种不同参考轨迹和存在外部干扰情况下的仿真和实验结果表明,所提控制方案具有良好的轨迹跟踪能力和抗扰性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信